Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[2709] Csimby2008-06-29 20:38:01

A céltábla középpontja csak a 2×2-es négyzet közepébe eső 1×1-es négyzetbe eshet. Egy lövés akkor találja el a céltáblát, ha annak \frac{1}{2} sugarú környezetébe esik a céltábla középpontja. A kérdés tehát az, legkevesebb hány \frac{1}{2} sugarú körrel fedhető le az egységnégyzet. Ehhez pedig legalább 4 szükséges ugyanis tekintsük a négyzet sarkait, ha 3 körrel le tudnánk fedni, lenne két sarok amit ugyanaz a kör fed le. Ez csak úgy lehet ha az egyik oldal a az egyik kör átmérője, a kimaradó rész pedig könnyen láthatóan nem fedhető le 2 körrel (a két már lefedett sarokhoz akármilyen közel van még lefedendő pont így megint oldal átmérőjű köröket kell elhelyezni).

Előzmény: [2707] Python, 2008-06-29 20:05:28
[2708] rizsesz2008-06-29 20:14:43

4 elég.

Előzmény: [2707] Python, 2008-06-29 20:05:28
[2707] Python2008-06-29 20:05:28

Egy 2x2 méteres négyzet alakú papírlap mögött el van rejtve egy 1 méter átmérőjű kör alakú céltábla. Legalább hányszor kell rálőnie egy mindig pontosan célzó mesterlövésznek, hogy biztosan eltalálja a céltáblát? (A találatok pontszerűek, a céltábla pereme is érvényes találat.)

[2706] jenei.attila2008-06-27 22:15:49

Nagyon szép. Máris találtunk 3 látszólag teljesen különböző rekurziót. Mepróbáltam a teljes indukciós bizonyítást, egyelőre nem sokra jutottam vele, de még nem adtam fel. Azért nem könnyű. Kiváncsi lennék egy közvetlen kombinatorikai gondolatmenetre, ami egyből kiadja a zárt alakot.

Előzmény: [2705] leni536, 2008-06-27 18:43:15
[2705] leni5362008-06-27 18:43:15

Legyen n db nyitó és n db záró zárójelünk. A helyes zárójelezések száma an.

a0=1

Vizsgáljuk meg, hogy n+1 db nyitó és záró zárójelből hány zárójelezés készíthető. A zárójelezés nyilván egy nyitó zárójellel kezdődik, ennek keressük meg a záró párját. A kettő között elhelyezkedik k db zárójelpár, utána pedig n-k:

( k db zárójelpár ) n-k db zárójelpár

A két zárójel között ak, utána pedig an-k zárójelezés készíthető. Mivel k 0-tól n-ig terjedhet, ezért:

a_{n+1}=\sum_{k=0}^na_ka_{n-k}

Sirpi Wikipédiás linkje alapján ezek egyértelműen a Catalan számok.

[2704] Sirpi2008-06-27 13:47:57

Egyébként ezt az angol nyelvű linket is érdemes megnézni, itt 3 különböző bizonyítás is van a dologra (egy generátorfüggvényes és két elemi - utóbbinak külön szépsége, hogy az \frac 1{n+1} szorzót is megmagyarázza), zárójelezés helyett jobbra és felfelé lépkedő, főátló alá nem lépő királlyal.

Előzmény: [2703] lorantfy, 2008-06-27 11:05:36
[2703] lorantfy2008-06-27 11:05:36

Szép gondolat a rossz zárójelezések összeszámolásának ez a formája. Köszönöm a segítséget!

Előzmény: [2702] jenei.attila, 2008-06-25 14:57:28
[2702] jenei.attila2008-06-25 14:57:28

A képlet helyesen:

p_{n,n}=\binom{2n}{n}-\sum_{i=0}^{n-1} p_{i,i}\binom{2n-2i-1}{n-i}

Előzmény: [2701] jenei.attila, 2008-06-25 14:53:42
[2701] jenei.attila2008-06-25 14:53:42

A pn,z-re (ha n\nez) nem tudok zárt képletet, de pn,n másképp is felírható, ami alapján egy teljes indukciós bizonyítás sikerre kell hogy vezessen. Az összes zárójelezések száma \binom{2n}{n}, amiből ki fogjuk vonni a rossz zárójelezések számát. Vezessünk be egy s számlálót 0 kezdőértékkel, amely a zárójelekből álló sztringet elejétől olvasva 1-gyel nő, ha nyitó, illetve 1-gyel csökken, ha záró zárójelet olvasunk. A zárójelezés nyilván akkor romlik el, amikor az s -1 -et vesz fel, ez pedig csak páratlan pozícióban lehet. Pl. nyilván rossz a zárójelezés, ha )-lel kezdődik. Tehát a következőképpen számolunk: A szóban forgó páratlan pozíció (2i+1) előtt befejezett, jó zárójelezés áll (s=0), aztán záró zárójel következik. Ezen esetek száma az előző 2i pozíción létrejövő jó zárójelezések száma (pi,i), szorozva a 2i+2 -edik pozíciótól kezdődő összes zárójelezések számával (\binom{2n-2i-1}{n-i}). Ha i megy 0-tól n-1 -ig, ezek összege megadja az összes rossz zárójelezést. Vagyis:

p_{n,n}=\binom{2n}{n}-\sum_{i=0}^{n-1} \binom{2n-2i-1}{n-i}

Ebben a rekurzióban már csak egy index szerepel, úgyhogy teljes indukcióval bebizonyítható, hogy a Catalan számokat adja. Sok sikert.

Előzmény: [2700] lorantfy, 2008-06-24 10:55:29
[2700] lorantfy2008-06-24 10:55:29

Szia Attila!

Kösz a segítséget! Én is a Catalan számokra gondoltam, csak még bizonyítani kéne.

Előzmény: [2695] jenei.attila, 2008-06-23 16:27:11

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]