Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[2840] kaj2009-01-13 22:28:29

Ezt az egyenletet meg tudja valaki oldani?

alfa - sin(alfa) = 1.21

[2839] jenei.attila2009-01-13 20:51:50

Tényleg nem értem, mit nem értesz. Ha h(x)=x a valós számokon értelmezett identitás fv., akkor h(x+c)-h(x)=(x+c)-x=c ahol c konstans. A konstans fv pedig pl. 1 szerint periodikus (de minden valós szám szerint is periodikus,csak nekünk az 1 szerint volt érdekes). A hozzászólásomban a c=np egyszerűen konstans. Szerintem tényleg rágd át elejétől amit írtam, ha nem érthető, megpróbálom újra megfogalmazni. Igyekeztem világosan írni, de nem biztos hogy sikerült. Az eredit feladat az volt, hogy előállítható-e az identitás fv. két periodikus fv. összegeként (a válasz igen). Kicsit általánosabban azt vizsgáltam meg, hogy mely fv.-ek állíthatók elő így. Előre rögzítettem az egyik tag (f) periodusát, ez 1 lenne. A másik tag (g) periodusa pedig p, szintén előre rögzített, pl. gyök 2 (a két periódus nem lehet összemérhető).Ha h-val jelöljük az így előállítandó fv.-t (tehát h=f+g), akkor az előállíthatóság szükséges feltétele, hogy az x->h(x+p)-h(x) fv. 1 szerint periodikus legyen (itt p a g fv. előre rögzített peródusa, 1 pedig az f szintén előre rögzített periódusa). Tehát h-t előre rögített periódusú fv.-ek összegeként kívánom előállítani. Azt állítottam, hogy ez a feltétel nemcsak szükséges, hanem elégséges is. Vagyis ha teljesül hogy x->h(x+p)-h(x) fv. 1 szerint periodikus és p irracionális, akkor h valóban elő is állítható f 1 periódusú, és g p periódusú fv.-ek összegeként. Az érdekes az, hogy ilyen f-et és g-t úgy lehet konstruálni, hogy a valós számok halmazát megfelelően osztályokra bontjuk (ezt az osztályozást adtam meg), és egy osztály egy tetszőleges elemén (reprezentáns elem) tetszőlegesen megadva f értékét (pl. f itt legyen 0), ebből kiindulva az osztály többi elemén a megadott egyszerű egyenlőség szerint definiáljuk f értékét. Az osztályok megszámlálható számosságúak, viszont kontinuum sok osztály van. Különös, hogy a különböző osztályokban lévő valós számokon felvett f értékek teljesen függetlenek egymástól. Vagyis minden osztályból egy-egy reprezentáns elemen tetszőlegesen definiálható f értéke (a reprezentáns elemen felvett f fv. érték már egyértelműen meghatározza az osztály többi elemén felvett f fv. értékeket). Remélem így már kicsi érthetőbb.

Szerintem ennek nincs köze a Fourier és egyéb ortogonális sorfejtésekhez. A Fourier sorok is eleve 2pí periodikus fv.-eket fejtenek sorba. Valóban mondható, hogy a témában már nem vagyok otthon, de azért megjegyezném, hogy 20 éve diplomáztam az ELTÉn programtervező matematikusként numerikus ágazaton, méghozzá elég jó eredménnyel. 5 évig tanultam analízist (Simon Péternél, akinek történetesen a harmonikus analízis a szakterülete), numerikus analízist, approximációelméletet, funkcionálanalízist. Bár nagyon sokat felejtettem, azért nem teljesen ismeretlen a téma előttem. Én azt próbáltam elmondani, hoy amiket írtál, nem hogy nem elég pontos matematikailag, hanem kifejezetten zavaros. Nemcsak tartalmilag, de formálisan sem helytállók a mondataid. Egyszer csak használsz olyan jelöléseket, amiket előtte nem definiálsz (pl a g fv. az r periódus, aztán egyszercsak az r már fv., véletlen tag, stb.) Ha te érted amit írtál, akkor biztosan le tudod úgy írni, hogy más is értse. Légyszíves próbáld meg.

A kritikát el tudom viselni akkor, ha előbb veszed a fáradságot és valóban elolvasod amit írtam. Azt viszont tényleg nem viselem, ha valaki el sem olvassa, csak vagdalkozik vagy azért, hogy kötekedjen, vagy azért hogy bemutassa milyen okos, vagy hogy bemutassa én milyen hülye vagyok. Általában igyekszek pontosan és érthetően fogalmazni. Nem állítom, hogy mindig sikerül, de ha valaki rákérdez, akkor nagyon szívesen elmagyarázom újra, másképp.

Hízelegni eszem ágában sem volt, de azért bántani sem akartalak.

Ha van kedved, olvasd át mégegyszer amit írtam, ha valami nem világos számodra, megpróbálom mégegyszer elmagyarázni. Nem állítom hogy jó a megoldásom (de szerintem az), ezért várom a fórumtársak észrevételeit. Nekem nagyon tetszett ez a feladat, mert nem túl bonyolult, mégis felettébb meglepő első hallásra.

Előzmény: [2838] kiskiváncsi, 2009-01-13 19:36:54
[2838] kiskiváncsi2009-01-13 19:36:54

Válaszok fordított sorrendben: 1. Dehogy kötekszek 2. Nem butaság, csak mondtad, ortogonális fv-ek szerinti sorfejtésben nem vagy otthon. Ezért ejtettem ennek egy speciálisát a Fourier sorokat. 3.Az könnyen eldönthető, hogy alkalmazva a definiciót (h(x+np)-h(x)) ha h(x)=x periodikus fv. Állításod az , hogy 1 periodikus. Igaz? Nem igaz? 4. A kritikát el kell viselni. Te mondtad olvassuk, elemezzük amit írtál. Így papírt ceruzát rántottam. Kardok azért maradjanak hüvelyükbe. Hízelegni nem kell. 3.ra kell válaszolni.

Előzmény: [2837] jenei.attila, 2009-01-13 15:30:38
[2837] jenei.attila2009-01-13 15:30:38

Ezzel nem értem mi a baj. A h identitás fv.-re ez a különbség (h(x+np)-h(x)) konstans fv., ami valóban tekinthető akár 1 szerint periodikusnak. Ez nem mond ellent a definíciónak. Vagy még mindig azt hiszed, nem vagyok tisztában a periodikus fv. fogalmával? Hát, ez sem túl hízelgő, de azért elviselem. De személyeskedés ida vagy oda, áruld már el, hogy hoztad össze azt a sok butaságot amit írtál. Vagy csak ha rosszul fogalmaztad meg, akkor légyszíves fejtsd ki érthetőbben. Vagy csak kötekedni akartál?

Előzmény: [2835] kiskiváncsi, 2009-01-13 15:16:39
[2836] kiskiváncsi2009-01-13 15:17:33

Tartózkodj a személyeskedéstől!

Előzmény: [2833] jenei.attila, 2009-01-13 12:01:07
[2835] kiskiváncsi2009-01-13 15:16:39

Ezt írtad: Ha h(x)=x, akkor h(x+np)-h(x)=np természetesen 1 szerint periodikus fv. Ezért írtam be a pontos definiciót.

Előzmény: [2823] jenei.attila, 2009-01-12 12:54:20
[2834] kiskiváncsi2009-01-13 15:10:32

Oké. periódus , periodikus

Dirichlet-függvény f(x) f(x)=1 ha, x racionális f(x)=o ha x irracionális periódusa minden racionális szám.

Akkor a periodikus fv definiciója:

f:D--R, az f függényt perodikusnak nevezzük, ha van p nem nulla valós szám ahol a függvény értelmezve van, és minden értelmezési tartománybeli x re x-p, x+p is értelmezési tartománybeli és f(x+l)=f(x), f(x-l)=f(x)

Előzmény: [2830] Káli gúla, 2009-01-13 00:41:49
[2833] jenei.attila2009-01-13 12:01:07

Én is arra gondoltam, hogy ha az összegben megenged nem periodikus tagot, akkor nincs miről beszélni, hiszen az lehet maga az előállítandó fv. mindenféle periodikus tag nélkül. Nekem úgy tűnik, hogy valamilyen könyvből kiollózott néhány bekezdést, esetleg idegen nyelvből fordítva, majd egymás után dobálta (pl. mi az a véletlen tag?). Nem tudom mi volt ezzel a célja, de szerintem ne is kérdezzük meg. Na mindegy, hagyjuk.

Amúgy érthető amit írtam? Szerintem nagyon érdekes, hogy az egyes osztályokon egymástól teljesen függetlenül lehet megadni az f-et. Nem tudom konkrétan megadni, hogy egy x pontban mi lesz f értéke, mert ehhez meg kéne találni annak az osztálynak a már kijelölt reprezentáns elemét (x0), amelyben f értékét tetszőlegesen rögzítettük. Ha a reprezentáns elem már megvan, akkor n könnyen kiszámítható. Tehát x-re meg kéne találni x0-t és n-et, hogy az {x}={x0+np} egyenlőség teljesüljön (adott p mellett, pl. legyen gyök 2). Persze lehetne x0 maga az x, ez is reprezentálja az osztályt, csak ahhoz hogy f értékét bármely x-re meg tudjuk mondani, az osztály minden x elemére ugyanazt az előre kiválasztott x0-t kéne megkapni. Egyelőre nem találtam olyan algoritmust, amely ezt a problémát megoldaná (mindegy milyen reprezentáns elemet találunk, de az egy osztályba tartozó számokhoz mindig ugyanazt). Ebben kérek segítséget.

Esetleg más, két periodikus fv. összegeként nem előállítható fv.-ek előállíthatók több periodikus fv. összegeként. Ennek szerintem az lenne a szükséges és elégséges feltétele (pl. 3 fv-re), hogy létezzen p,q,r páronként nem összemérhető periodusok, hogy h(x+p+q)-h(x+p)-h(x+q)+h(x) r szerint periodikus legyen. Ez szerintem pl igaz a másodfokú polinomokra. S.í.t, n-ed fokú polinom előállítható n+1 db. periodikus fv. összegeként. Ezt még nem gondoltam végig. Vélemények?

Előzmény: [2832] nadorp, 2009-01-13 11:26:03
[2832] nadorp2009-01-13 11:26:03

:-)

"ha g(x) minden valós intervallumon korlátos változású függvény, és g(x=0) létezik, akkor g(x) előállítható megszámlalhatóan sok periódikus tag és egy nem periódikus tagnak az összegeként."

Bizonyítás:

g(x)=sinx+(g(x)-sinx)

:-)

Előzmény: [2825] kiskiváncsi, 2009-01-12 19:44:46
[2831] psbalint2009-01-13 02:15:30

köszönöm szépen a megoldást! ez az ötlet hiányzott!

Előzmény: [2829] Káli gúla, 2009-01-13 00:28:50

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]