Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[3282] Kós Géza2010-07-11 20:17:08

Az idei matekolimpián az 5. feladat volt a legérdekesebb, szerintem érdemes itt is megbeszélni.

 

506. feladat (IMO2010/5). A B1,B2,B3,B4,B5,B6 dobozok mindegyikében kezdetben egy érme van. Kétféle megengedett lépés van:

1. típusú lépés: Választunk egy Bj nemüres dobozt, ahol 1\lej\le5. Elveszünk egy érmét a Bj dobozból, és hozzáadunk két érmét a Bj+1 dobozhoz.

2. típusú lépés: Választunk egy Bk nemüres dobozt, ahol 1\lek\le4. Elveszünk egy érmét a Bk dobozból, és kicseréljük a Bk+1 (esetleg üres) doboz tartalmát a Bk+2 (esetleg üres) doboz tartalmával.

Állapítsuk meg, hogy ilyen lépések valamilyen véges sorozata segítségével elérhető-e, hogy a B1, B2, B3, B4, B5 dobozok mindegyike üres legyen, a B6 doboz pedig pontosan 201020102010 érmét tartalmazzon. (Definíció szerint abc=a(bc).)

[3281] jonas2010-05-12 23:13:41

gabor7987 feladata a Valaki monja meg! téma 1024. hozzászólásában annyira megtetszett, hogy föladtam egy nehezebb változatát az idei BME matematika versenyen. A feladat így szól.

505. feladat. Adott két 1-nél nagyobb egész szám: m és n. Bizonyítsuk be, hogy csak véges sok n-edik hatvány áll elő mn egymás utáni egész szám n-edik hatványának az összegeként.

Próbáljátok meg megoldani. Köszönet gabor7987-nak az ötletért, jenei.attilának a megoldás ötletéért, valamint Horváth Miklósnak amiért évek óta fáradhatatlanul szervezi a versenyt.

[3280] HoA2010-04-30 10:42:01

Tájékozódásul vizsgáljuk a felület metszetét sorra az x=0, y=0, x=y , x= -y síkokkal. A kapott függvények:

f1=y4–y2=y2(y21) zérushelyei -1, 0, 1 , a függvény jellegét az origó környezetében az 1. ábra mutatja. Tehát ebben az irányban itt lokális maximum van.

f2=x4–x2=x2(x21) hasonló f1 -hez.

f3 : Legyen x=y=t . f3=2t44t2=2t2(t22) jellegében megegyezik az előzőekkel, csak a zérushelyek itt (  - \sqrt{2} ,  0 , \sqrt{2} )

f4 : Legyen x= -y = t . f4=2t42t2+2t2=2t4 A metszetgörbe jellege a 2. ábra szerinti, ebben az irányban lokális minimum van. A felületnek tehát az origó nyeregpontja. Általánosabb eredményt kapunk, ha áttérünk polárkoordinátákra. x=rcos\phi,y=rsin\phi helyettesítéssel

g(r,\phi)=r4(cos4\phi+sin4\phi)–r2(cos\phi+sin\phi)2 Az r szerinti deriváltak az origóban \frac {dg}{dr} = 4 \cdot r^3 (cos^4 \phi + sin^4 \phi ) - 2 r ( cos \phi + sin \phi )^2  = 0 \frac {d^2 g}{dr^2} = 12 \cdot r^2 (cos^4 \phi + sin^4 \phi ) -2 ( cos \phi + sin \phi )^2  Ez általában negatív és az 1. ábra szerinti viselkedést indokolja. A kivétel éppen az x = -y eset, ekkor a második tag eltünik, és így még a harmadik derivált is nulla. A negyedik derivált pozitív volta adja a 2. ábra szerinti metszetet. Összefoglalásként megállapíthatjuk, hogy az origó ennek a függvénynek egy különleges nyeregpontja, egy irányban lokális minimum, az összes többiben lokális maximum.

Hátha valaki folytatja e,césv vektorok elemzésével.

Előzmény: [3279] Lóczi Lajos, 2010-04-23 23:34:25
[3279] Lóczi Lajos2010-04-23 23:34:25

(Szélsőérték szempontjából) milyen típusú pontja az f(x,y):=x4-x2-2xy+y4-y2 felületnek az origó?

[3278] HoA2010-04-23 17:38:03

Gondolatébresztőnek kezdjük az általános esettel, a térkép hasonlatnál maradva legyen az origó felett közönséges domboldal. Ekkor a szintvonal két irányába mutat v1=v0 és v2=-v0 és ezekre merőleges a gradiens, e=g és c=-g . ( A minusz jelek nálam nem igazán jól látszanak. ) Érdekesebbek a speciális terepalakulatok - csúcs , nyereg, töbör .

Előzmény: [3277] Lóczi Lajos, 2010-04-17 14:04:34
[3277] Lóczi Lajos2010-04-17 14:04:34

A térbeli x-y-z koordinátarendszerben tekintsünk egy sima "domborzati térképet" az x-y alapsík fölött, azaz legyen adott egy f:R2\toR deriválható függvény. Tekintsük az alapsíkban az összes origó kezdőpontú egységvektort, és jelöljük meg ezek közül mindazokat az e, c és v vektorokat, amelyek irányában az f felület origó fölötti f(0) pontjában rendre: legmeredekebb az emelkedés, legnagyobb a csökkenés, illetve a pontbeli adott irányú érintőegyenes vízszintes.

Milyen összefüggések állapíthatók meg az e, c és v vektorok között?

[3276] Tóbi2010-04-14 15:35:35

Vegyük az egyenlőtlenség logaritmusát. k*log(a)=<L*log(b)<k*log(a)+log(2) Tulajdonképpen itt log(b) olyan többszörösét keressük, amit maradékosan osztva log(a)-val, a maradék legfeljebb log(2) lesz. Amennyiben log(a)/log(b) racionális a maradék 0 is lehet, ha irracionális, tetszőlegesen megközelíti a 0-t, így log(2) alá is megy.

Előzmény: [3272] m2mm, 2010-04-13 23:21:09
[3275] m2mm2010-04-14 14:25:25

Ja, persze: elírtam ak\lebl<2ak a kérdéses egyenlőtlenség.

Előzmény: [3273] Tóbi, 2010-04-13 23:48:42
[3274] Hajba Károly2010-04-14 01:20:12

a=1,2

b=1,1

k=2

l=5

Előzmény: [3272] m2mm, 2010-04-13 23:21:09
[3273] Tóbi2010-04-13 23:48:42

a=4, b=2 esetén ez nem igaz. (Vagy bármilyen a=b*b, b>=2 esetén.) Ha nem szigorú egyenlőtlenséget akarunk, akkor lehet, hogy igaz.

Előzmény: [3272] m2mm, 2010-04-13 23:21:09

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]