| [3485] phoenix | 2011-10-03 19:43:51 |
 Több szem többet lát, köszönöm az útravezetést, Róbert Gida és Sirpi neked is :-)
|
|
| [3484] Róbert Gida | 2011-10-03 17:07:57 |
 Van egyszerűbb út is: minden sorban van azonos színű pontpár (skatulyaelv), ha van két sorod amikben ugyanott van az azonos színű pontpárod, akkor egyszínű téglalapod van. 3 féle helyen lehet a pontpár, a szín kétféle lehet, így 3*2=6 lehetőség van a helyre+színre. Azaz 7 sornál lesz egyszínű téglalapod (skatulyaelv).
|
| Előzmény: [3482] Sirpi, 2011-10-03 09:03:01 |
|
| [3483] Sirpi | 2011-10-03 10:36:54 |
 Végiggondoltam ezt az utat is, és tényleg igaz az az állítás, hogy: Ha egy 3x7-es téglalapban elhelyezünk 11 korongot, akkor a korongok közül van 4, amik egy (álló) téglalap 4 csúcsát alkotják.
Amit leírtál, az csak az a rész, amikor az egyik oszlopban 7 korong van, ilyenkor tényleg 9 a maximum. Viszont mi a helyzet, ha a legtöbb korongot tartalmazó oszlopban 6,5,4 korong szerepel? Végig lehet nézni, ilyenkor is kijön, hogy 10 után elakadunk.
Szóval ez az út is járható, de személy szerint macerásabbnak érzem, mint a (3 hosszú) sorok szerinti esetvizsgálatot.
|
| Előzmény: [3481] phoenix, 2011-10-03 01:35:47 |
|
| [3482] Sirpi | 2011-10-03 09:03:01 |
 Ez a feladat konkrétan a Fazekasban volt nálam felvételi feladat, 92-ben, azóta kedvencem.
A bizonyításhoz nem azt érdemes nézni, hogy az egyik színből legalább 11 van, hanem azt, hogy a sorok összesen 8-félék lehetnek. Ha van két azonos sor, készen vagyunk. Ha van egyszínű sor, szintén. Ezeket érdemes végiggondolni, és meg is van a bizonyítás (és az is látszik, hogy 3x6-ra hogy néz ki az ellenpélda).
|
| Előzmény: [3481] phoenix, 2011-10-03 01:35:47 |
|
| [3481] phoenix | 2011-10-03 01:35:47 |
 Gondoltam ilyenre Azért nem lehetséges?, mert 21 négyzet van, és mondjuk optimális esetben 10-10-et tudunk elhelyezni egyik-egyik színből, ha az egyikből több van, akkor szinte garantált hogy négy négyzet összejön ami meghatároz egy téglalapot, elhelyezünk egymás alá 7-et azután legalsóba vízszintesen ez eddig 9 és bárhova tesszük tizediket akkor már meglesz, nem beszélve a másik színről hogy abból jóval több van
|
 |
| Előzmény: [3480] Róbert Gida, 2011-10-03 01:10:57 |
|
| [3480] Róbert Gida | 2011-10-03 01:10:57 |
 "igazából bármilyen téglalapot színezel is ki, mindig lesz négy olyan négyzet, ami egy téglalapot határoz meg... "
helyesen megkérdezve: igazából bármilyen téglalapot színezel is ki, mindig lesz négy olyan pont, ami egy egyszínű téglalapot határoz meg...
Ez pedig nem igaz.
A feladatot skatulyaelvvel lehet megoldani. Ramsey tipusú problémának is tekintheted. A feladat több színnel és magasabb dimenzióban is érdekes. Tudtommal 2d-ben és 4 színnel is már megoldatlan, hogy mely téglalapokat lehet kiszínezni, hogy ne legyen benne monokromatikus téglalap. Véges sok, de még mindig marha sok színezést kéne végignézni ehhez.
|
| Előzmény: [3479] phoenix, 2011-10-02 18:38:08 |
|
|
|
| [3477] phoenix | 2011-10-02 14:20:22 |
 321. Ha a síkot (tekintsük négyzetrácsosnak) kiszínezzük két fajta színnel, legyen barna és kék, bárhogy is választjuk meg a színeket, mindig lesz négy azonos színű, amelyek egy téglalap csúcsait határozzák meg. A kérdés hogy miért?
|
|
| [3476] Róbert Gida | 2011-09-20 15:16:04 |
 Olyan Tom és Jerry tipusú feladat. igaz, ez pont a szabályos (n+1) szögben egy oldal hosszának a reciproka. Ezen pontokban jelenjenek meg a morzsák (egy csúcsban legfeljebb egy). Ha a fenti egyenlőtlenség nem teljesül, akkor 1 morzsa gyorsabban jelenik meg, mint ahogyan azt meg tudná enni a hangya (hiszen a szabályos sokszögben csúcsok közti legrövidebb távolság az oldal hossza). Így ekkor véges időn belül olyan helyzet lesz, hogy a hangya egy csúcsban van (éppen megette a morzsát), és a többi n csúcsban morzsa van. 1 percen belül morzsát teszünk le, de ne abba a csúcsba ahol a hangya éppen volt. Így egy morzsát sem tud elérni, és n+1 morzsa lesz a csúcsokban. (egyikben most kivételesen kettő).
n=1-re még pontos is a formula.
|
| Előzmény: [3475] Sirpi, 2011-09-20 13:30:35 |
|