Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]    [403]  

Szeretnél hozzászólni? Jelentkezz be.
[3555] joe2012-04-14 22:44:56

If you choose an answer to this question at random, what is the chance you will be correct?

A) 50

Előzmény: [3550] lorantfy, 2012-04-13 21:09:24
[3554] Zilberbach2012-04-14 20:06:41

25 + 50 + 60 + 25 = 160

160:4 = 40

[3553] Zilberbach2012-04-14 19:58:01

"Change" helyett: chance.

Előzmény: [3551] jonas, 2012-04-14 16:47:05
[3552] Hajba Károly2012-04-14 19:44:58

Ez nem egy paradoxon?

Előzmény: [3550] lorantfy, 2012-04-13 21:09:24
[3551] jonas2012-04-14 16:47:05

Átirat.

If you choose an answer to this question at random, what is the change you will be correct?

A) 25%

B) 50%

C) 60%

D) 25%

Előzmény: [3550] lorantfy, 2012-04-13 21:09:24
[3550] lorantfy2012-04-13 21:09:24
[3549] Róbert Gida2012-01-15 20:35:34

Egy variánsa ismert feladat: 16 egymásutáni egész szám közt mindig van olyan, amely relatív prím a többihez. Míg 17 számra ez nem igaz.

Előzmény: [3541] Sirpi, 2012-01-15 07:40:05
[3548] Sirpi2012-01-15 17:48:42

Én is ezt találtam meg (kézzel).

Előzmény: [3545] jonas, 2012-01-15 11:16:07
[3547] jonas2012-01-15 13:13:49

Épp ellenkezőleg. Hasznos, hogy elmondtad, hogy lehet megtalálni egyszerűen ezt a megoldást. Én egyszerűen csak végignéztem az összes kis számot, hogy melyik működik. Mivel azt írtad, hogy van 800 alatt megoldás, ezért kezdtem el kis példát keresni.

Előzmény: [3546] FlagD, 2012-01-15 13:07:44
[3546] FlagD2012-01-15 13:07:44

Akkor én is lelövöm az én "megoldásom".A két számot a-val, és b-vel fogom jelölni. b=a+k (vagyis a és b között k-1 darab számra kell teljesülnie a feltételnek.)

Az első, ami beugrott, az az ismert feladat, hogy bármely pozitív egész n-re van egymás utáni n darab összetett szám. 6!+1=721 pedig osztható 7-tel, vagyis a=6!, és b=6!+7 jó választás lesz. Azt néztem el, hogy 727 persze nem osztható 7-tel. (No persze annak is be kellett volna ugrani, hogy Wilson-tétele miatt,akkor már pl. 5|4!+1 is igaz, és a=4! is hasonló okok miatt nem megfelelő)

És akkor, hogy lehet jó megoldást adni: Az könnyen látható, hogy a,b>2. Mivel két szomszédos szám legnagyobb közös osztója : (n;n+1)=1, emiatt (a;b-1)>1, és (b;a+1)>1 (és így a-nak, és b-nek kell lennie különböző prímosztójának ). Ha elkezdjük b-1;a-val, illetve b;a+1-gyel az euklideszi-algoritmust, akkor mindkét esetben az első maradék: k-1. Ez a fentiek miatt azt jelenti, hogy k-1-nek legalább két különböző prímosztója van. Nézzük sorba az eseteket (amikor pontosan két prímosztója van k-1-nek!)

1. Ha k-1=2*3. Ekkor b=a+7. (Legyen most 2|a, és 3|b; a fordított eset hasonló!) Ekkor a+1 (=b-6 miatt!); a+2; a+4 (=b-3 is!); a+6 számok "jók", de a+3=b-4 mind a-val, mind b-vel relatív prím. Vagyis ez az eset nem lehet!

2-3. Hasonlóan k-1=2*7 (2|a,7|b) esetre pedig a+7=b-8 "rossz"; míg k-1=2*5 (2|a,5|b) esetre: a+5=b-6 "rossz", amennyiben 3 nem osztója b-nek, és a+9=b-2 "rossz", amennyiben 3 nem osztója a-nak (és persze 3 vagy a-t, vagy b-t oszthatja csak!)

4. Legyen most k-1=3*5 (itt lesz a jó megoldás), illetve 3|a, 5|b! Válasszuk a-t párosnak is (ekkor persze b is az). Így a+1(=b-15 miatt), a+2, a+3,a+4;a+6(=b-10 miatt is);a+8;a+9;a+10;a+11(=b-5 miatt);a+12;a+14;a+15 eleve "jók" (a,és b választása miatt). a+5=b-11; a+7=b-9; a+13=b-3 számokat kell vizsgálnunk csak. Mivel 3 nem osztja b-t, 5 pedig a-t, a fenti három vizsgált szám csak úgy lehet "jó", ha 11|b, míg 7*13|a teljesül. Most ott tartunk, hogy 2*3*7*13=546|a , míg 2*5*11=110|b. Vegyük észre, hogy 5*2*5*11=550 "közel" van 546-hoz. Ha mind 546-t, mind 550-t szorozzuk 4-gyel, akkor megfelelő a-t, b-t kapunk. Vagyis a=2*2*2*3*7*13 = 2184 , és b=2*2*5*5*11 = 2200 valóban jó választás.

Azt még nem látom pontosan, hogy miért ez a legkisebb. Ja és elnézést jonastól (természetesesn Övé az érdem), hogy lelőttem, hogy a megoldása hogy jöhetett ki, a rossz megoldásom miatt próbáltam "kiköszörülni a csorbát"!

Üdv!

Előzmény: [3545] jonas, 2012-01-15 11:16:07

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]    [403]