|
| [3988] csábos | 2015-11-08 19:34:54 |
 Ha van 1, akkor van 1+1, és akkor van minden természetes szám. Vegyük az
&tex;\displaystyle \frac{1}{\frac{1}{a}-\frac{1}{a+c}}=\frac{a^2}{c}+a&xet;
összefüggést. Ebből &tex;\displaystyle a&xet;-t kivonva &tex;\displaystyle c=1&xet; választással adódik &tex;\displaystyle a^2&xet;. Ha &tex;\displaystyle a=-1&xet;, akkor &tex;\displaystyle c=2&xet;-vel adódik &tex;\displaystyle \frac{a^2}{2}&xet;, amit önmagával összeadva adódik &tex;\displaystyle a^2&xet;.
Ezután a
&tex;\displaystyle \frac{b}{2}=\frac{1}{\frac{1}{b}+\frac{1}{b}}&xet;
trükkel csak a
&tex;\displaystyle 2ab=(a+b)^2-a^2-b^2&xet;
kifejezést kell felezni.
|
| Előzmény: [3987] Loiscenter, 2015-11-08 08:23:17 |
|
| [3987] Loiscenter | 2015-11-08 08:23:17 |
 Modositananak a feladaton:
1 tartozik a szamhalazunkhoz. Csak kulönbséget (-) es recsiprok-at venni. Bizonyitando Összeadást, szorzást lehet elvégezni!
( Köszi Csábosnak hozászlásodért - de ez a néhány gomb 'sok' lenne?)
|
| Előzmény: [3986] csábos, 2015-11-07 20:29:12 |
|
|
| [3985] Loiscenter | 2015-11-06 23:30:09 |
 Hajnal Péter : Elemi Kombinatorikai feladatok ( Polygon)
18.2 Feladat: Kis számológépünkön csupán összeadás és kivonás van, de egy szám reciprokát is képezhetjük. Kiszámolhatjuk - e vele két szám szorzatát?
PROBLÉMA: könyvben szereplö megoldás nem teljes, mert kész tényként tekintette hogy (a+1) létezik , holott nem mutatja hogy 1 van benne - igy a+1 nem bizonyitott hogy van benne S halmazban.
Segitsetek tisztázni ezt a problémat! Köszönöm!
|
|
| [3984] csábos | 2015-10-22 13:11:04 |
 Az összes ilyen tulajdonságú 4-edfokú polinom körülbelül:&tex;\displaystyle (x^2+1)(ax^2+bx+1)&xet; alakú, ahol &tex;\displaystyle 0< a<1&xet; és &tex;\displaystyle b^2-4a<0&xet;. A körülbelül az azt jelenti, hogy konstanssal lehet szorozni és &tex;\displaystyle x&xet; helyébe &tex;\displaystyle cx&xet;-et írni.
|
| Előzmény: [3983] Lóczi Lajos, 2015-10-18 10:23:59 |
|
| [3983] Lóczi Lajos | 2015-10-18 10:23:59 |
 Szép példa! (Ráadásul eggyel kisebb a fokszáma, mint annak a példának, melyet egy 1999-es cikkben találtam korábban.)
A példádban az is szép, hogy az &tex;\displaystyle \epsilon_0=510663/50000000&xet; konstans egy egyszerű racionális szám:
az &tex;\displaystyle \epsilon x^5+\frac{31 x^4}{1000}+\frac{17 x^3}{50}+\frac{1031 x^2}{1000}+\frac{17 x}{50}+1&xet; polinom minden gyökének valós része negatív, ha &tex;\displaystyle 0<\epsilon<\epsilon_0&xet;, ám &tex;\displaystyle \epsilon=0&xet; vagy &tex;\displaystyle \epsilon=\epsilon_0&xet; esetén már fellépnek tiszta képzetes gyökök.
|
| Előzmény: [3981] csábos, 2015-10-17 23:43:55 |
|
|
| [3980] Lóczi Lajos | 2015-10-13 00:38:49 |
 Rögzítsünk egy &tex;\displaystyle n\ge 2&xet; egészt, egy pontosan &tex;\displaystyle (n-1)&xet;-edfokú egyváltozós valós &tex;\displaystyle p&xet; polinomot, és egy &tex;\displaystyle \epsilon_0>0&xet; számot.
Tudjuk, hogy minden &tex;\displaystyle 0<\epsilon\le \epsilon_0&xet; mellett az &tex;\displaystyle \epsilon x^n + p(x)&xet; polinom minden gyökének valós része negatív. Igaz-e, hogy az (&tex;\displaystyle \epsilon&xet;-tól független) &tex;\displaystyle p&xet; polinom minden gyökének valós része is negatív?
|
|
| [3979] Lóczi Lajos | 2015-10-09 23:25:13 |
 Még egy megjegyzés: attól, hogy a Reduce szerint az egy harmadfokú egyenlet gyöke, még nem biztos, hogy ne lehetne egyszerűsíteni; pl. a 0-ra rámondanád, hogy az &tex;\displaystyle x^3=0&xet; egyenlet gyöke?
|
| Előzmény: [3977] emm, 2015-10-07 17:44:42 |
|