| [713] jenei.attila | 2005-01-14 11:40:40 |
 Még régen a tiszta kihalási problémából vizsgáztam sztochasztikus folyamatok című tantárgyból, de sajnos már csak ennyire emlékszek, meg arra, hogy meglehetősen nehéz probléma. Egyébként szerintem is két dimenziós bolyongásról van szó, na majd utánanézek.
|
| Előzmény: [712] Atosz, 2005-01-14 11:27:08 |
|
| [712] Atosz | 2005-01-14 11:27:08 |
 Kedves jenei.attila!
Segítenék, ha tudnék, de ennek a feladatnak én sem tudom a megoldását. Előkeresem majd a papírjaimat, amit egy unalmas előadáson firkálgattam és megpróbálok majd abból valami értelmeset közreadni, hátha valakinek segít. Egyszer egy ismerősöm elmesélte ezt a feladatot egy valség tanárnak, aki felületesen megnézve azt mondta rá, hogy a kihalási problémára (???) hasonlít. Nem tudom, hogy mi az, és azóta sem néztem utána, de hátha ez támpont lehet valakinek. Persze lehet, hogy semmi köze ahhoz.
|
| Előzmény: [711] jenei.attila, 2005-01-14 11:17:01 |
|
| [711] jenei.attila | 2005-01-14 11:17:01 |
 Szia Atosz!
A gyógyszeres feladat szerintem is nehéz (legalábbis nekem), én is csak egy rekurzív képletet tudok felírni, és egy kis programot is írtam, amely megadja minden lehetséges állapot valószínűségét. Szerintem elképzelhető, hogy nem is adható zárt képlet a keresett valószínűségre. Még azért nem adtam fel, de segíthetnétek.
|
|
| [710] lorantfy | 2005-01-13 13:12:11 |
 141. feladat megoldása: Vegyünk 100100 embert aki ott nyaralt. Közülük 100 kapott fertőzést 100000 egészséges.Hazaérve mind megvizsgáltatja magát.
Az 100000 egészséges közül 2% 2000 kap pozitív eredményt. A 100 beteg közül 99%=99 fő pozítiv. Összesen tehát 2099 ember kap pozitív eredményt. Te ezek között vagy, hiszen pozitív eredményt kaptál.
Tehát annak a valószínüsége, hogy beteg vagy 99/2099=4,72%.
|
| Előzmény: [708] rizs, 2005-01-13 00:46:31 |
|
|
| [708] rizs | 2005-01-13 00:46:31 |
 141. feladat, és eléggé közismert is, de nem igazán tudom :) Egy afrikai országban nyaralsz. Hazaérve megtudod, hogy az itt nyaralók közül minden 1001-edik ember egy vírusfertőzést szed össze. Hazaérve megvizsgáltatod magadat, és pozitív eredményt kapsz. A tesztől azt mondják, hogy a megbízhatósága: - ha valóban beteg vagy 99 - ha egészséges vagy 98 Mennyi az esélye, hogy tényleg beteg vagy?
142. feladat :) közismert, hogy 10-féle embertípus van, melyek ezek? :)
|
|
|
| [706] rizs | 2005-01-09 22:34:25 |
 na még egyszer: hogy látható legyen (aki nem tud Texelni, ugye...) 140. 2 egyéb, valószínűleg közismertebb feladat: 3 kimenetelű totón a 2 találathoz hány szelvény kell? és 4 kimenetelűn a 3 találathoz?
|
|
| [705] Atosz | 2005-01-09 21:34:47 |
 Valóban! Köszi, hogy szóltál, de nem tudtam. Megnéztem és ott a feladat egy 3 és 4 tonnás teherautóról szól valamint legalább 7 tonna áruról, de amit következtettél belőle az hibás. A helyes képlet (2a+1)*(a+1)/(a+2) Ez kiadja az ottani megoldást a 28/5-t, illetve a 2 és 3 tonnás esetben nem a 10/3-t, hanem a 15/4-t. Azonban ez egy felső határ. Azt még be kell látni, hogy ennyi teljesíthető is.
|
| Előzmény: [704] rizs, 2005-01-09 20:19:38 |
|
| [704] rizs | 2005-01-09 20:19:38 |
 a feladat megoldása megtalálható a kömal honlapján :) mármint egy részéé :) http://www.komal.hu/verseny/2000-10/B.h.shtml ezt logikusan végiggondolva az is kiderül, hogy ha a két teherautó töltőtérfogata a és a+1, akkor a tömeg, amire szerződést vállalhatunk, az (2a+1)*a/(a+1), jelen esetben 10/3.
|
| Előzmény: [700] Atosz, 2005-01-06 15:38:02 |
|