Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[770] Atosz2005-02-04 09:52:18

145. feladat Vegyünk egy tetszőleges A0B0C0 háromszöget, majd ennek A0B0 oldalán véletlenszerűen válasszunk ki egy pontot, legyen ez A1. Amilyen arányban felosztja A1 az A0B0 oldalt, ugyanilyen arányban (és megfelelő sorrendben) vegyük fel a B1 és C1 pontokat a megfelelő oldalakon. Így kapjuk az A1B1C1 háromszöget. Az eljárást kezdjük előlről (már az új háromszögön - újra véletlenszerű választással) és folytassuk a végtelenségig. A kérdés az, hogy a háromszögeknek ez a végtelen sorozata az eredeti háromszög mely belső pontjához konvergál?

[769] Káli gúla2005-01-31 23:30:02

A

p_{n+6}= \frac16 p_{n+5} + . . . + \frac16 p_n

rekurzió megoldására gondoltam (bár elismerem, az "igazi" jelző kicsit erős volt :)

Nézzük, mi lenne, ha nem a (0,0, ... , 1) kezdeti feltételekkel indulnánk. Vegyük az (1,0,...,0)-hoz tartozó 1,0,...,0,1/6, . . . sorozatot. Az első elemet elhagyva a 0,..,0,1/6, . . . sorozatot kapjuk, tehát (1,0,..,0)-ról indulni pontosan ugyanaz, mint (0.0,...,1/6)-ról. Hasonló összefüggést kaphatunk a többi kezdeti feltételre is (felhasználva a megoldásoknak a kezdeti feltételtől való lineáris függését). Jelöljük a (0,..,1,..,0) j-edik egységvektorral induló megoldást Ej-vel. Tegyük fel, hogy létezik a keresett határérték (lim E6(n) = p). Legyen az első elem elhagyása (a léptetés operátor) T. Világos, hogy TEj(6) = Ej(7) = 1/6 (j=1,..,6), ezért

E1\simTE1=1/6E6\sim1/6p

E2\simTE2=E1+1/6E6\sim2/6p

E3\simTE3=E2+1/6E6\sim3/6p

E4\simTE4=E3+1/6E6\sim4/6p

E5\simTE5=E4+1/6E6\sim5/6p

E6\sim6/6p

Ezeket összeadva, E1+...+E6\equiv1 miatt

1 =  E_1 + . . . + E_6 \sim \frac16 (1+ . . . +6) p =  \frac16 \cdot \frac{6\cdot 7}{2} p .

* * *

Be kell még látni, hogy minden megoldás konvergens. Ehhez felhasználhatjuk azt a tulajdonságot, hogy a számtani közép nem kerülhet túl közel a számhalmaz széléhez, pontosabban, ha a\lexj\leb (j=n+1,...,n+6), akkor a+d/6\leM\leb-d/6, ahol d=b-a és M az xj (j=n+1,...,n+6) számok számtani közepe. Így, ha a sorozat elemeit hatosával blokkokra osztjuk, az egyes blokkok mindig az előző blokk által feszített intervallum középső kétharmadába esnek.

Előzmény: [768] Atosz, 2005-01-30 19:21:54
[768] Atosz2005-01-30 19:21:54

Kedves Káli gúla!

Köszönöm a gratulációt! Egyébként ez volt a te "igazi" megoldásod is, vagy a rekurziós?

[767] Káli gúla2005-01-30 11:57:12

Kedves Atosz, bocs, újraolvasva, teljesen jó ahogy írtad. Mindegy, hogy időben az első, vagy az utolsó mező szerint számolunk.

Kedves Kemény Legény, kösz a hivatkozást. A konvergencia bizonyítással a végén tényleg nem sokat epszilonozik.

[766] Káli gúla2005-01-30 10:46:30

Igen, grat! Annyi kiegészítéssel, hogy Ai az az esemény legyen, amikor utoljára mondjuk, hogy most már elég egy dobás.

Általánosabban, 6 helyett k-ra, egy k hosszú szakaszba való bekerülés valószínűsége egy. Az elhagyó (utoljára érintett) mező szerint osztályozva

1 = p_{N} + \frac{k-1}{k} p_{N-1} + \frac{k-2}{k} p_{N-2} + ... \frac{1}{k} p_{N-k+1}

Így, ha tudjuk, hogy lim pN=p létezik, akkor

1 =  \sum_{j=0}^{k-1} \frac{k-j}{k} p = \frac{k(k+1)}{2k} p ,

ahonnan p=2/(k+1), éppen a lépéshossz várható értékének a reciproka.

Előzmény: [765] Atosz, 2005-01-30 08:22:27
[765] Atosz2005-01-30 08:22:27

Sziasztok!

Azt hiszem meg van a megoldás. Káli gúla hozzászólása ébresztett rá arra, hogy egy szomszédos 6-os tartományba lépés valsége nagyobb mint 1, hiszen ezek nem függetlenek egymástól. Az utolsó dobás alapján elkezdtem a rekurziót visszafejteni és kaptam, hogy

p_{2005}=\frac{1}{6}*p_{2004}+...+\frac{1}{6}*p_{1999}

Ez azt jelenti, hogy a sorozat mindig az előző hat átlagával halad tovább és mivel az elejét ismerjük így onnan elindulva kiszámítható, hogy mennyi lesz p2005

Viszont ennél találtam egy gyorsabb megoldást is! Tekintsük azokat az eseményeket, amikor kimondom azt, hogy most már 1 dobással is beérhetek a célba. Ez 6 helyet jelent a 2005-ik előtt. Legyen Ai az az esemény, hogy a (2005-i)-ik helyen szólalok meg (i=1,...,6). Ezen események valségei pAi nem egyeznek meg a rálépés valségével, viszont függetlenek és összegük 1. Legyen ilyen távolságban a mezőre lépés valsége p (feltesszük, hogy már közel egyforma - éppen ezt keressük). A 2004-ik helyen akkor szólalok meg, ha előtte ráléptem az 1998-ikra és ott 6-ost dobtam, azaz p_{A1}=p*\frac{1}{6}. A 2003-ik helyen akkor szólalok meg, ha az 1998-ik helyről érkezem 5-össel, vagy az 1997-ről 6-ossal, azaz p_{A2}=p*\frac{2}{6}, stb...

Ha ezt mind felírjuk, kapjuk hogy

p_{A1}+...+p_{A6}=p*(\frac{1}{6}+...+\frac{6}{6})=p*\frac{21}{6}

Mivel ez 1, így

p=\frac{6}{21}=\frac{2}{7}

Természetesen ez csak akkor lesz pontosan igaz, ha a kérdéses hely tart a végtelenbe, de a 2005. már "jó közelítéssel" ennek tekinthető.

[764] SAMBUCA2005-01-29 19:56:25

Hali!

A Kemény Legény által emlegetett cikk megtalálható itt.

SAMBUCA

[763] Kemény Legény2005-01-29 16:00:57

Na a cikk a KöMaL elektronikus archivumában található meg,pl. rákeresve Kós Géza cikkeire,a Játék mindenkinek -et kiválasztva.A 11-es szám pedig a novemeber hónapot volt hivatott jelölni,kár hogy nem találtátok meg.

[762] Atosz2005-01-29 13:25:05

Bolond vagyok!

Az előző hozzászólásomat tekintsétek semmisnek, hiszen pont ez a lényeg, a pi-k összege nem 1.

[761] jenei.attila2005-01-29 13:03:32

Nem lehet, hogy elírtál valamit? 1994-ben nem volt 11. szám. (Sőt, tudtommal máskor sem).

Előzmény: [757] Kemény Legény, 2005-01-29 10:23:59

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]