Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[2609] jonas2008-03-18 14:15:13

A válasz 1/2, amit \alpha=0,\beta=-1/2 helyen vesz fel. Ez következik a 3/0. feladatsor 6. feladatból (a feladat forrása minden bizonnyal a Pólya--Szegő analízis könyv).

Előzmény: [2608] Lóczi Lajos, 2008-03-18 01:49:58
[2610] Lóczi Lajos2008-03-18 16:05:37

Valóban szép tétel. A kérdésem az, hogy milyen, minél rövidebb elemi meggondolással lehet a konkrét példát megoldani.

Előzmény: [2609] jonas, 2008-03-18 14:15:13
[2611] rizsesz2008-03-18 19:05:00

A közölt függvény lényegében a sima másodfokú x négyzet. Ezt tologatjuk. Ennek nézzük 2 hosszú szakaszait. Ha már a teljes szakasz a növekvő részen van, akkor legalább 4 lesz az y értékek különbsége. Ez egyúttal azt jelenti, hogy az legalább 2 hosszú lesz a negatív vagy a pozitív rész, tehát lesz olyan y, aminek az abszolútértéke legalább 2 a monotonitás miatt. Ugyanez igaz a csökkenő részre. Amikor áthalad az minimumhelyén, akkor a legkisebb érték az ehhez tartozó, a legnagyobb pedig ynégyzet és (2-y)négyzet maximuma. itt y a baloldalra haladás a minimumhelytől. y>1 esetén ez a 1., ellenkező esetben a 2. mivel y értéke. könnyen látható, hogy ez akkor lesz minimális, ha y=1, ekkor 1 lesz a minimum és a maximum különbsége, tehát legalább 1/2 a keresett megoldás, ami így ki is jön. elnézést a TeXtelenségért.

Előzmény: [2610] Lóczi Lajos, 2008-03-18 16:05:37
[2612] rizsesz2008-03-18 23:17:06

Szóval tisztázom a saját irományomat, immáron TeXben.

Tehát ez a függvény nem más, mint x2 eltolva egyaránt az x és az y tengelyen, de hála a szabad paraméterezésnek, gondolkodhatunk csak az x2 világában.

A feladat azt kéri, hogy ennek a függvénynek egy (x0;x0+2) szakaszán a függvény abszolútértékének maximuma minimális legyen. Tegyük fel, hogy x0 már a növekvő szakasz része. Ekkor, mint az könnyen ellenőrizhető, a felvett fv.-értékek különbsége legalább 4 lesz (a sima x2-nél x0 minimuma 0, a különbség pedig 4x0+4, ami legalább 4). A skatulya-elv miatt ennek a legalább 4 értékű növekedésnek legalább 2 hosszú része vagy negatív, vagy pozitív, de legalább 2; így a maximum is legalább 2 az abszolútérték miatt. Ugyanez elmondható a monoton csökkenő részre is, marad a közbülső rész, amikor a másodfokú áthalad a minimumhelyén. Tfh. (x0;x0+2) tartalmazza a minimumhelyet, ami most a szimmetria miatt legyen 0. Ekkor x0 negatív. Teljesen az előző logikát követve x0 és x0+2 négyzeteik közül a nagyobb minimumát keressük. Ez már könnyebb feladat, a két parabola metszéspontja adja ki, az x0=-1 helyen, a föggvényérték 1, ekkor valóban kijön, hogy legalább 1/2 a minimum, ami a logikát követve el is érhető.

Előzmény: [2608] Lóczi Lajos, 2008-03-18 01:49:58
[2613] Lóczi Lajos2008-03-20 22:41:55

Tekintsünk egy olyan tetraédert az első térnyolcadban, amelynek egyik csúcsa az origó, a többi három csúcs pedig a három koordinátatengely egy-egy pozitív pontja. Mi a kapcsolat e tetraéder oldallapjainak területe között?

[2614] Róbert Gida2008-03-21 01:13:09

Héron képlettel könnyű:

T42=T12+T22+T32

Előzmény: [2613] Lóczi Lajos, 2008-03-20 22:41:55
[2615] Lóczi Lajos2008-03-23 00:56:14

Oldjuk meg a feladatot 4 dimenzióban is.

Tekintsük a (0,0,0,0) origót és az (a,0,0,0), (0,b,0,0), (0,0,c,0), (0,0,0,d) pontokat (ahol a,b,c,d>0). Ennek az 5 pontnak a konvex burka meghatároz egy négydimenziós testet, melynek 5 db háromdimenziós "oldallapja" van.

Mi a kapcsolat ezen 5 lap térfogata között?

Előzmény: [2613] Lóczi Lajos, 2008-03-20 22:41:55
[2616] Káli gúla2008-03-23 17:59:33

A "ferde" lap mértéke merőleges vetítésnél akárhány dimenzióban is  cos \phi-vel szorzódik, lényegében pontosan azért, mert a ferde lap normálvektorának megfelelő koordinátája  cos \phi.

Az elsőfokú közelítésre visszatérve, egy d széles sávban akárhogyan veszünk három A, B, C pontot, az ABC háromszög valamelyik magasságának hossza legfeljebb d lehet. Bizonyítás. Húzzunk a három ponton keresztül a sáv tengelyére merőlegesen három egyenest, és legyen pl. a B-n átmenő a középső. Ekkor az AC szakasznak van közös pontja (B1) a középső egyenessel, így  mb\leBB1\led.

A -1, 0 és 1 pontokhoz tartozó parabolapontok egy \sqrt2 befogójú egyenlőszárú derékszögű háromszöget alkotnak. Ebben a háromszögben a legkisebb magasság 1, így egy ezt tartalmazó egyenes sáv szélessége is legalább 1.

Előzmény: [2615] Lóczi Lajos, 2008-03-23 00:56:14
[2617] Lóczi Lajos2008-03-23 20:06:20

De mit jelent itt a \phi szög? És mit az "elsőfokú közelítés"? Sajnos nem értem, mit mond a térfogatokra nézve az, ha az "egyenes sáv" szélessége legalább 1. Kérlek, adj még magyarázatot :)

Előzmény: [2616] Káli gúla, 2008-03-23 17:59:33
[2618] Lóczi Lajos2008-03-23 20:26:55

[Jaaa, vagy esetleg az "elsőfokú közelítés" alatt "első közelítésben" értendő? :) ]

Előzmény: [2617] Lóczi Lajos, 2008-03-23 20:06:20

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]