Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[3910] csábos2014-07-25 20:27:23

Igazad van, tényleg elnéztem.

Előzmény: [3909] Erben Péter, 2014-07-25 18:12:03
[3911] Erben Péter2014-07-27 10:37:39

Ha 35 helyett 51 számról kérdezzük a feladat állítását, akkor működik az oszthatóságos lemma, és még a kiegyensúlyozós fázisra sincs szükség.

Veszünk 50 számot az 51 közül. Ezekből kiválasztható néhány, amelyek összege 50-nel osztható. Az összeg biztosan pozitív és 100-nál kisebb (az 51. szám kihagyása miatt), tehát csak 50 lehet.

Előzmény: [3910] csábos, 2014-07-25 20:27:23
[3912] Loiscenter2014-07-27 16:05:40

ROKA SÁNDOR: 2000 feladat.... ( 1780. feladat) a feladat 35 db számrol van szo! tehát sokkal erösebb állitás. Van már majdnem megoldásom(????) ezutan mindig indirekt modon tegyuk fel hogy nincs 50 összeg. Elöször : bontjuk 5-tel osztható csoportokra ( ezt tehetjük) Tekintjuk a legfinomabb ilyen felbontást. ( legtöbb tagot tartalmazást). ÉSZRE VÉTELEK legfinomabb felbontasokról : 1, legalább 7 tagot tartalmaz. 2. minden ilyen tag a csoportban legfeljebb 5 szamot tartalmaz. 3. Ha A1 A2 ket tag , akkor barmelyik ket szám helyi csere a tagok közötti esetén az 5-tel valo oszthatsága megmaradt, igy tagnak maradtak. 4. 25 összegü tagot nem tartalmazhat. 5. 9-nél több tag nem lehet.(söt 9 -es se) tehat csak 7,8 tagot tartalmazo felbontás maradt. itt a 3) pont nagyon kezdtem kiaknazni - nincs meg nekem teljes kidolgozva. mindig varom a segitségeteket És nagyon varom ErBen Péter féle fejlesztést (minimum mennyi a legkisebb m...) addig is köszönöm a segitségeteket.

Előzmény: [3911] Erben Péter, 2014-07-27 10:37:39
[3913] Erben Péter2014-07-28 07:24:17

A 3. pontot nem értem, amikor cserélünk számokat a tagok között. Pedig arra biztosan szükség lesz, amint a következő példa mutatja.

Tegyük fel, hogy a 35 szám így néz ki: 29 darab 2-es és 6 darab 7-es. Ekkor a 7-est tartalmazó tagok pontosan öt eleműek, és a csupa 2-esből állók is. Vagyis pontosan 7 tag lesz.

Előfordulhat, hogy a 7 tag így néz ki: 6-szor: (2+2+2+2+7), 1-szer: (2+2+2+2+2). Itt a tagok összegének megváltoztatása nélkül nem tudjuk az ötvenet előállítani, hiszen van 6 db 15-ös és 1 db 10-es.

Előzmény: [3912] Loiscenter, 2014-07-27 16:05:40
[3914] csábos2014-07-28 10:51:42

A csoportok közti csere azt jelenti, hogy ha pontosan 5 elemből áll egy csoport, és van két ilyen is, akkor egy-egy elemet cserélve újabb 5-ösöket kapunk, amelyekből szintén kiválasztható néhány szám. amely összege osztható 5-tel. Ha a cserélt számok nem kongruensek egymással modulo 5, akkor kisebb csoportokat kapunk. Így feltehető, hogy ha van több 5-ös csoport, akkor az összes azokban lévő elem páronként kongruens modulo 5.

Előzmény: [3913] Erben Péter, 2014-07-28 07:24:17
[3915] Loiscenter2014-07-28 15:23:48

Nagyon jo ötletet meritettem a hozzászólásotokböl.

Most tekintjuk azt legfinomabb felosztást, melyre csak 7 csoport a maximális. 1) csoportok közti szamok különbsége oszthato 5-tel. 2) (LEGFONTOSABB): csorton belül szamok különbsége is rendelkezik ezzel a tulajdonsaggal.( különben csinálhatjuk egy rossz cserét). összegezve : 35 számokbol bármelyik kettönek különbsége osztható 5-tel. 3)vannak 3-nal kisebb szám. tehat vagy 1, vagy 2( és kizárják egymást). a)ha legkisebb szám 2. akkor alap 2.35=70. ezért mar csak legfeljebb(30:5)=6 darab 7-nal nem kisebb szam lehet. azaz legalább (35-6)=29 darabb 2-es van ==> kivalasztható 25-öt , kész.(ez pont Erben P. esete) b) ha legkisebb szam 1-es. akkor alap: 35. csak (65:5=13 darab 6-nál nem kisebb. azaz (35-13)=22 darab 1-es van legalabb. tehat van 4 csoport , melynek összege 5 ( összesen 20) és 3 csoport, melynek összege 80.téhát van 30-nal nagyobb összegü. ennek összege csak 50-nal nagyobb lehet:55,60,65,70.(mert van még két csoport).ebbol a csoportbol 2 darabb legnagyobb szam kicerélem a legkiebb-be igy csokkenthetjuk 50 alá az összeget. Tovább kiegészithetem 1-essekkel 50-re. téhat a 7-es csoport esete el van intézve. csak 8-as csoport esete maradt. (de jo !!!!)

Előzmény: [3914] csábos, 2014-07-28 10:51:42
[3916] Erben Péter2014-07-28 19:42:26

Innen már tényleg kevés van hátra.

A 8 tag esete az eredeti probléma kisebb változata. Legyenek a &tex;\displaystyle b_1, b_2,\dots,b_8&xet; a tagokban lévő számok összegének ötödével egyenlők. Így &tex;\displaystyle b_1+b_2+\dots+b_8=20&xet;, és &tex;\displaystyle b_i\le 10&xet;. Megmutatható, hogy kiválasztható közülük néhány, amelyek összege 10. A kiválasztott &tex;\displaystyle b_i&xet;-k megadják az eredeti feladat megoldását: a nekik megfelelő tagokban lévő számok összege 50.

Előzmény: [3915] Loiscenter, 2014-07-28 15:23:48
[3917] csábos2014-07-28 21:28:13

Mostmár szívesen látnám a hivatalos megoldást. Akár a Pataki tanár úr félét.

Előzmény: [3916] Erben Péter, 2014-07-28 19:42:26
[3918] Erben Péter2014-07-28 22:17:51

Megpróbálom leírni a kisebb feladatra, onnan lehet általánosítani.

Adott tehát 8 pozitív egész, összegük 20, egyik sem több, mint 10. Szeretnénk kiválasztani közülük néhányat, amelyek összege 10.

Megadunk egy algoritmust, ami sok esetben megadja a megoldást. Ha mégsem, azokkal az esetekkel elbánunk valahogy.

Algoritmus: A számokat súlyoknak tekintjük, amiket két 10 kg kapacitású "tartályba" próbálunk bepakolni a következő módon. Súly szerint csökkenő sorrendben haladunk, és a soron következő súlyt berakjuk valamelyik tartályba, ahova még elfér. Soha nem lépjük át a 10 kg-os határt. Ha végigmegy az algoritmus, akkor örülünk. Ha nem, akkor megvizsgáljuk, hol akadtunk el.

Az elakadás szükséges feltétele: Legyenek a súlyok: &tex;\displaystyle b_8\ge b_7 \ge \dots \ge b_1&xet;. Tegyük fel, hogy a &tex;\displaystyle k&xet;. súly az első, amit már egyik tartályba sem tudunk berakni. Ha a tartályokban pillanatnyilag megmaradt szabad kapacitás &tex;\displaystyle h_1&xet; és &tex;\displaystyle h_2&xet;, akkor az elakadás azt jelenti, hogy &tex;\displaystyle b_k>h_1&xet; és &tex;\displaystyle b_k>h_2&xet;. Egészekrők van szó, vagyis &tex;\displaystyle b_k\ge h_1+1&xet; és &tex;\displaystyle b_k\ge h_2&xet;.

Most felhasználjuk, hogy a szabad kapacitások összege pontosan a még be nem pakolt súlyok összege.

&tex;\displaystyle 2b_k\ge h_1+ h_2 +2 = b_1+b_2+\dots+b_{k-1}+b_k+2 \rightarrow b_k \ge b_1+b_2+\dots+b_{k-1}+2 \ge k+1&xet;

Alulról becsülve az összes súly összegét:

&tex;\displaystyle 20=b_1+b_2+\dots+b_8 = (b_1+\dots+b_{k-1})+(b_k+\dots+b_8)\ge k-1+(8-k+1)\cdot(k+1)&xet;

Rendezés után &tex;\displaystyle k^2-9k+12\ge 0&xet; adódik. Csak olyan &tex;\displaystyle k&xet; indexű súlynál akadhat el az algoritmus, amire a &tex;\displaystyle p(k)=k^2-9k+12&xet; polinom nemnegatív. Az fog kiderülni, hogy nem sok ilyen &tex;\displaystyle k&xet; van.

A &tex;\displaystyle p(k)&xet; csak &tex;\displaystyle k=1&xet; és &tex;\displaystyle k=8&xet; esetén nemnegatív, a minket érdeklő halmazon.

&tex;\displaystyle k=8&xet; nem lehetséges, mert feltettük, hogy minden súly legfeljebb 10. Marad tehát a &tex;\displaystyle k=1&xet; eset, ott még kell egy kicsit dolgozni. (Folyt. köv.)

Előzmény: [3917] csábos, 2014-07-28 21:28:13
[3919] Erben Péter2014-07-28 22:33:54

Ha &tex;\displaystyle k=1&xet;, akkor tehát az történt, hogy a 7 legnagyobb súlyt már be tudtuk pakolni, és az utolsó (&tex;\displaystyle b_1&xet;) nem fér egyik tartályba sem. Ebből következik, hogy &tex;\displaystyle b_1>1&xet;. Sőt, &tex;\displaystyle b_1=2&xet;, mert &tex;\displaystyle b_1\ge 3&xet;-ból az következne, hogy a súlyok összege legalább 24.

Továbbra is az összegre figyelve kiderül, hogy legalább 4 darab 2-es van. (&tex;\displaystyle 2+7\cdot 3 > 20&xet;, &tex;\displaystyle 2\cdot 2+ 6\cdot 3>20&xet;, stb.) Ha van 5 darab kettes, akkor kész vagyunk.

Ha pont 4 darab 2-es van, akkor a maradék 4 súly mind 3. Ebben az esetben &tex;\displaystyle 2+2+3+3&xet; megoldás.

Megjegyzés: A &tex;\displaystyle p(k)&xet; polinom általában is segít megtalálni egy olyan &tex;\displaystyle m&xet; számot, ami fölött mindig megy a kiválasztás. Amikor 100 az összeg, akkor az derül ki, hogy &tex;\displaystyle m=35&xet; a határ. (Ott is a &tex;\displaystyle k=1&xet; esettel kell külön megküzdeni.) &tex;\displaystyle m=34&xet;-re a 33 darab 3-as és 1 darab 1-es esetén nem állítható elő az 50.

Előzmény: [3918] Erben Péter, 2014-07-28 22:17:51

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]