Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[2108] Sirpi2007-06-21 11:50:54

Szép elemzés!

Azért leírom azt is, hogy én mire jutottam. Talán kicsit egyszerűbb becsléseket használok, valamint semmilyen függvényvizsgálatra nincs szükség.

Legyen y:=n+x

\left(1 + \frac 1 {n(y-n)} \right)^y = e

És itt, mikor 1/y-edik hatványra emelem mindkét oldalt:

n(y-n) = \frac 1 {e^{1/y}-1}

n^2 - y n - \frac 1{1-e^{1/y}} = 0

n_{1,2}= \frac{y \pm \sqrt{y^2+4 / (1-e^{1/y})}}2

A két gyök közül az egyik lesz n, a másik xn. Az egyik gyök (a minuszos) 1 körül van, nézzük meg ezt alaposabban. Feltételezve, hogy y nagy, e1/y=1+1/y+1/(2y2)+O(1/y3), ahonnan

x_n = \frac 12 \cdot \left(y - \sqrt{y^2 - 4y + 2 + O(1/y)}\right) =

=\frac 12 \cdot \frac{y^2 - (y^2-4y+2+O(1/y))}{y + \sqrt{y^2 - 4y + 2 + O(1/y)}} \approx \frac {2y-1}{y + (y-2)}

Ez pedig éppen az x_n \approx 1+\frac {1/2}{y-1} becslést adja, ahonnan szintén látszik az 1/2-es határérték. Viszont kihasználtam, hogy ha n\to\infty, akkor y\to\infty, ezt még annyival meg kell támogatni, hogy mivel a két gyök összege y, ezért valamelyik a kettő közül legalább y/2, válasszuk ezt n-nek, a másikat pedig xn-nek.

* * *

Mindamellett azért is írtam le ezt az egészet, mert az az érdekes dolog látszik belőle, hogy ha nem n és xn lenne a feladatban, hanem x és f(x), akkor bejönne egy új gyök, hiszen az első lépésnél, a hatványozásnál az alap lehet épp negatív is, ha a kitevő (y) páros egész szám. Ekkor:

n^2 - y n - \frac 1 {1 + e^{1/y}} = 0

Ennek pedig egy pozitív (n), és egy negatív (xn) gyöke van. Viszont az sose fordulhat elő egyszerre, hogy y páros egész és n is egész, de ha n tetszőleges valós szám lehet, ami tart a végtelenbe, akkor valóban kapunk egy új gyököt:

x_n = \frac 12 \cdot \left( y - \sqrt{y^2 + 4 / (1 + e^{1/y})} \right)

Itt most e1/y\approx1 triviális becslést alkalmazva

x_n \approx \frac 12 \cdot \frac {y^2-(y^2+2)}{y + \sqrt{y^2+2}} \approx -\frac 1{2y}

Szóval ha n nem feltétlen egész, akkor van egy másik (negatív) sorozat is xn-re (ilyenkor az alap -1 közelében van).

Előzmény: [2106] Lóczi Lajos, 2007-06-21 03:16:23
[2109] Cckek2007-06-22 19:38:21

Felhívnám a tisztelt forumozók figyelmét, hogy a 2089-es hozzászolásomban kitűzött gyönyörűszép feladat még mindig megoldatlan:)

[2110] Sirpi2007-06-22 23:50:30

Na jó, akkor lecsapom :-)

Pont elolvastam a feladatot, majd a vihar miatt jött egy 2 órás áramszünet, azalatt volt időm (többek közt ezt is) végiggondolni.

Tehát f(f(n))=f(n)+n és f(1)=2.

A Fibonacci-számokon végigugrálva az embernek elég hamar előjön az a sejtése, hogy f(n) = [\frac{\sqrt 5+1}2 n + \frac 12], vagyis a függvény lineáris (\sqrt5+1)/2-es szorzóval, egészre kerekítve.

És hogy ez miért jó? Legyen g(n) = \frac{\sqrt 5+1}2 n, vagyis a kerekítés nélküli függvény. Erre nyilván g(g(n)) - g(n) = \left( \frac{\sqrt 5+1}2 \right)^2 n - \frac{\sqrt 5+1}2 n = n

Másrészt minden n-re |f(n)-g(n)|<1/2, vagyis n-1<f(f(n))-f(n)<n+1, és mivel a különbség egész, ezért csak n lehet. Ezen kívül g(n+1)-g(n)=(\sqrt 5+1)/2, vagyis f(n+1)-f(n)>(\sqrt 5-1)/2 > 0, így f(n+1)-f(n)\geq1.

Előzmény: [2109] Cckek, 2007-06-22 19:38:21
[2111] rizsesz2007-06-25 01:39:46

Ajándék: http://www.komal.hu/verseny/2001-05/B.h.shtml B. 3469, asszem :)

Előzmény: [2110] Sirpi, 2007-06-22 23:50:30
[2112] jonas2007-06-25 08:58:38

Akkor nyertem.

Előzmény: [2093] jonas, 2007-06-18 22:38:23
[2113] Cckek2007-07-01 19:42:18

Határozzuk meg azokat az f:R\to(0,\infty) folytonos függvényeket melyekre: \int{f(x)}dx=\frac{xf(x)}{2}+\lambda \int{\frac{dx}{f(x)}}, ahol \lambda>0

[2114] Cckek2007-07-02 09:19:08

Határozzuk meg az összes morfizmust (Q,+) és (Sn,o) között.

[2115] Lóczi Lajos2007-07-02 11:04:13

A feladatban határozatlan integrálok szerepelnek: ha a két integrációs állandót különbözőnek választjuk, elég nehéznek tűnik a kérdés. Legyenek tehát egyenlőek.

Az egyenletet f-re rendezve látjuk, hogy f deriválható a pozitív és a negatív félegyenesen. Deriválva az egyenletet egy differenciálegyenletet kapunk, melynek megoldásai

\pm \sqrt{a x^2+2\lambda}

alakúak, valamely a\ge0 állandóval. Most csak a pozitív előjel jön szóba. A feladat megoldásai lesznek tehát az olyan f függvények, amelyek x>0 és x<0 esetén a fenti képlettel vannak megadva, esetleg más-más a állandóval a pozitív és a negatív részen.

Előzmény: [2113] Cckek, 2007-07-01 19:42:18
[2116] Cckek2007-07-02 12:48:26

Szép:) Amúgy ezek második fokozati vizsgakérdések itt Romániában. Itt van még egy ha érdekel valakit:

Határozzuk meg azokat az ötödfokú valós együtthatós P(X) polinomokat, melyeknek a domináns együtthatójuk 1 és, ha a gyöke P-nek akkor 1-a illetve \frac1a is gyöke P-nek.

[2117] Csimby2007-07-02 13:31:30

Szerintem az 5 gyök mindig: a, 1-a, \frac{1}{a}, \frac{1}{1-a}, 1-\frac{1}{a} alakú.

Előzmény: [2116] Cckek, 2007-07-02 12:48:26

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]