Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[2098] lorantfy2007-06-19 11:59:09

Kedves Lajos!

Én úgy gondolkodtam, hogy az a és b megadásához minket az xn sorozat csak határértékben érdekel, vagyis nyugodtan helyettesíthető az \frac{n}{n-1} sorozattal, különben első egyenlet nem lenne igaz.

Az \frac{n^a}{n-1} határértéke pedig a<1-nél 0, a=1-nél 1, a>1-nél végtelenbe megy.

Előzmény: [2095] Lóczi Lajos, 2007-06-19 00:18:52
[2099] nadorp2007-06-19 12:39:23

Nem akarok kötözködni, de attól, hogy az an és bn sorozatokra \lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=1, nem következik, hogy an-1 és bn-1 ugyanolyan gyorsan tart 0-ba. ( pld a_n=\frac{n}{n-1}, b_n=\frac{2n-1}{2n-2}). Tehát csak arra akartam rákérdezni, hogy a feladatban szereplő xn sorozat miért helyettesíthető a \frac{n}{n-1} sorozattal ?

Előzmény: [2098] lorantfy, 2007-06-19 11:59:09
[2100] lorantfy2007-06-19 17:16:22

A sorozatot megadó \left(1+\frac{1}{nx_n}\right)^{n+x_n}=e egyenletnek mindig igaznak kell lenni. Tehát n\rightarrow\infty esetén nxn=n+xn

Előzmény: [2099] nadorp, 2007-06-19 12:39:23
[2101] Sirpi2007-06-19 17:37:36

Dehogy kell igaznak lennie. (1+1/n)n\toe, de ettől még nem igaz, hogy ez a sorozat konstans e. Sőt, ha már itt tartunk, akkor egy segédfeladat (bár már szerepelt itt az oldalon, úgy emlékszem).

\varepsilonn úgy van definiálva, hogy (1 + 1/n)^{n + \varepsilon_n} = e. Mi \varepsilonn határértéke?

Előzmény: [2100] lorantfy, 2007-06-19 17:16:22
[2102] Cckek2007-06-19 19:48:23

\epsilon_n\to \frac{1}{2}

Előzmény: [2101] Sirpi, 2007-06-19 17:37:36
[2103] Lóczi Lajos2007-06-19 22:38:34

Egyelőre azt sem tudom belátni, hogy az xn sorozat egyáltalán miért pozitív.

Előzmény: [2097] nadorp, 2007-06-19 09:55:00
[2104] Lóczi Lajos2007-06-21 01:34:29

A kérdéses xn sorozat az \ln(1+\frac{1}{n x_n})-\frac{1}{n+x_n}=0 egyenlet gyöke.

Bizonyos mennyiségű számolással (első- és második deriváltak vizsgálata, határérték a 0-ban és a végtelenben, stb.) belátható, hogy ennek az egyenletnek minden, elég nagy n-re (pl. n>10) csak 1 gyöke van, az is 1 és pl. 2 között. Ez azért segít, mert ekkor használható az x-\frac{x^2}{2}<\ln(1+x)<x egyenlőtlenség (0<x<1). Így az eredeti egyenlet xn gyöke beszorítható két egyszerű egyenlet gyöke közé. Ebből kapjuk pl., hogy

\frac{-1 + 2n^2}{4\left( -1 + n \right) n} + 
  \frac{{\sqrt{\frac{1 + 4n^2 - 8n^3 + 4n^4}
        {{\left( -1 + n \right) }^2n^2}}}}{4}<x_n<\frac{n}{n-1},

ami maga után vonja, hogy elég nagy n-ekre

1+\frac{1}{2n}<x_n<1+\frac{2}{n}.

Tehát az (xn-1)na sorozatnak csak a=1 esetén lehet véges, nemnulla limesze (ha egyáltalán létezik).

Finomabb ötleteket fog igényelni annak kiderítése, hogy (xn-1)n melyik pozitív számhoz tart.

Előzmény: [2103] Lóczi Lajos, 2007-06-19 22:38:34
[2105] Lóczi Lajos2007-06-21 01:52:59

A numerikus kísérletek azt mutatják, hogy

n(x_n-1)\to\frac{1}{2}, ami az eddigi sejtésektől (limesz=1) eltérő eredmény.

Előzmény: [2104] Lóczi Lajos, 2007-06-21 01:34:29
[2106] Lóczi Lajos2007-06-21 03:16:23

Használjuk fel a pontosabb x-x2/2<ln (1+x)<x-x2/2+x3/3 egyenlőtlenséget. Ebből arra következtethetünk, hogy xn az

\frac{1}{3n^3 x^3} - \frac{1}{2n^2 x^2} + 
  \frac{1}{n x} - \frac{1}{n + x}=0

és az

 - \frac{1}{2n^2 x^2} + 
  \frac{1}{n x} - \frac{1}{n + x}=0

egyenletek (1-hez közeli) gyökei között van. Ez egy másod- és egy harmadfokú egyenlet, a megoldóképleteik felírhatók. Az ezekben szereplő négyzet- és köbgyököket a binomiális tétellel lehet sorbafejteni, amiből végül megkapjuk, hogy mind az alsó-, mind a felső becslése xn-nek 1+\frac{1}{2n}+O(\frac{1}{n^2}), ha n\to\infty.

Előzmény: [2104] Lóczi Lajos, 2007-06-21 01:34:29
[2107] Cckek2007-06-21 08:21:59

Hiába... Le a kalappal:)

Előzmény: [2106] Lóczi Lajos, 2007-06-21 03:16:23

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]