Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[1797] HoA2007-01-19 23:04:07

A módszer az alábbi általánosításig biztosan működik:

- a két csoportban szereplő számok darabszáma ( most 2, ill. 4 ) legyen k ill. m.

- a csoportok elemeinek összege ( most 100,100) ne legyen nagyobb, mint A ill. B

Tehát legyen k+m számunk, x1,...,xk+m , ahol

x1\gex2\ge...\gexk+m\ge0(1)
\sum_{i=1}^k {x_i} \le A (2)
\sum_{j=1}^m {x_{k+j}} \le B (3)

Mekkora \sum_{i=1}^{k+m} {x_i}^2 maximuma?

Az összeget rögzített xk (az első csoport legkisebb eleme, az eddigi y) mellett vizsgáljuk. (1) -ből és (2) -ből A \ge \sum_{i=1}^k {x_i} \ge k \cdot x_k , 0 \le x_k \le \frac{A}{k} ( Ez egyben válasz Epsilon kérdésére: A=100 és k=2 esetére 0\lex2=y\le50 ) Az [1795]-beli indokláshoz hasonlóan belátható, hogy az első csoport négyzetösszege akkor a legnagyobb, ha x2=x3=...=xk x1=A-(k-1).xk Példa: ha k=4,x4=4,A=22 , akkor { 10;4;4;4 } négyzetösszege nagyobb, mint pl. { 7;6;5;4 } -é. A második csoportra igaz az [1795]-beli szabály: ameddig lehet xk+j=xk egy szám pedig B és az eddigiek összegének különbsége: xk+1=xk+2=...=xk+d=xk,xk+d+1=B-d.xk Az [1795]-beli szakaszhatárok most a \frac{B}{m} , \frac{B}{m-1} ... értékek. Vegyük észre, hogy  \frac{A}{k} > B esetén xk>B is előfordulhat, tehát maga B is lehet szakaszhatár. Ekkor a második csoport első eleme B, a többi 0. Másrészt ha B \ge m \cdot \frac{A}{k} akkor a második csoportba mindig "belefér" m darab xk érték, tehát görbénk csak egyetlen parabolaívből áll. Függvénygörbénk - a maximális négyzetösszeg xk tól függése - vizsgálatát másokra hagyom.

Előzmény: [1796] epsilon, 2007-01-19 17:09:25
[1798] Cckek2007-01-20 13:29:37

Legyen \theta,\phi \in \left(0,\frac{\pi}{2}\right) úgy, hogy tg\theta,tg\phi\inQ.

Oldjuk meg a cos2\thetasin2\theta=ctg2\phi egyenletet.

[1799] HoA2007-01-20 19:43:10

A megfigyelt jelenség már akkor is előjön, ha csak az első feltételt vesszük. Legyen tehát

L(x,y,\mu):=x2+y2+\mu(100-x-y)

Az első két parciális deriváltból itt is kijön x=y. Ábrázoljuk az f(x,y)=x2+y2 függvényt az xy síkban szintvonalakkal: ezek nyilván origó középppontú koncentrikus körök. A vizsgált tartomány az x+y=100 egyenes által határolt félsík. f(x,y) a tartományban és a határán is tetszőleges nagy értéket felvehet, maximuma nincs. Az egyenes x=0 vagy y=0 értékkel jellemzett pontja, amelyekből az y=100 ill. x=100 érték adódna, semmilyen különleges szerepet nem játszik. Nem is csoda, hiszen nemcsak x és y nagyságviszonyát, hanem az x\ge0 , y\ge0 feltételeket sem vettük figyelembe. Ha megtesszük, a Lagrange függvény így alakul:

L(x,y,\mu1,\mu2,\mu3):=x2+y2+\mu1(100-x-y)+\mu2(x-0)+\mu3(y-0)

A megoldandó egyenletrendszerben a 0-t adó szorzatoknál 0 tényezőül {100-x-y=0;\mu2=0;y=0} -t választva x = 100, {100-x-y=0;x=0;\mu3=0} -ból y = 100 adódik. A {\mu1=0;x=0;y=0} választás a megengedett \Delta alakú tartomány harmadik csúcsát jelóli ki, de itt persze nincs maximum. Visszatérve eredeti feladatunkra, itt az x+y\le100 és z+t+u+w\le100 mellett a w\ge0 , u\gew , t\geu, ... , x\gey feltételeket is figyelembe kell venni. Ezzel egyúttal a változók nemnegatív voltát is biztosítjuk. A 8 db 0 szorzat 0 tényezőinek megválasztásánál - 28 eset - anélkül, hogy mind a 256 kombinációt végignéznénk, csak rámutatunk, hogy a { w=0; u=w ; t=u; z=t ; y =z ; x+y = 100 } választás adja az x=100,y=z=t=u=w=0 megoldást, míg a { w=0; u=w ; z=t ; y =z ; x+y = 100 ; z+t+u+w = 100 } kombináció az x=y=z=t=50,u=w=0 eredményt.

Előzmény: [1791] Lóczi Lajos, 2007-01-19 01:16:58
[1800] Lóczi Lajos2007-01-20 21:32:49

Ó, persze, a nemnegativitási feltételeket kihagytam. Köszönöm, hogy rámutattál.

(Az zavarhatott meg, hogy egyenlőtlenséggel megadott feltételek esetén a multiplikátoroknak maguknak is nemnegatívnak kell lenniük, de ez még nem mond semmit a változókról...)

Előzmény: [1799] HoA, 2007-01-20 19:43:10
[1801] Lóczi Lajos2007-01-20 23:54:31

A számítógép szépen végignézte az összes esetet, és persze megtalálta a (100,0,0,0,0,0), (50,50,50,50,0,0) optimumokat (és csak ezeket találta).

Előzmény: [1799] HoA, 2007-01-20 19:43:10
[1802] epsilon2007-01-21 09:08:31

Köszi Mindenkinek! Alaposan kimerítettétek a témát! ;-) Cchek: a két szöget x illetve y-ra nevezve, mindkét oldalt 4-gyel szorozva, a sin2x=2sinx×cosx alapján, nullára rendezve, két négyzetösszek különbsége szorzatra bomlik és ez a 2 eset áll elő: sin2x=-2ctgy illetve sin2x=2ctgy és most a sin2x-et a tangens felesképletekkel kifejezzük sin2x=2t/(1+t×t) ahol t=tgx és így t-ben másodfokú egyenlet lesz, szerinted ez az út nem járható?

[1803] Cckek2007-01-21 09:59:09

De igen:) Ugyanis pontosan az

\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{z^2}

diofantikus egyenlet megoldása közben jött elő ez az egyenlet.

Előzmény: [1802] epsilon, 2007-01-21 09:08:31
[1804] sakkmath2007-01-22 11:22:22

A komoly problémák után kikapcsolódásként következzék egy könnyedebb, humoros feladat, amely Áprilisi fejtörő címmel a KöMaL 1980/4. számában jelent meg Csirmaz Lászlótól.

[1805] Python2007-01-22 17:15:29

Jó példa...

Megyek és megcsinálom :)

Előzmény: [1804] sakkmath, 2007-01-22 11:22:22
[1806] Lacczyka2007-01-24 18:51:15

Üdv!

Igazából segítséget szeretnék kérni. Még régen találkoztam ezzel a feladattal:

Egy szigeten él 23 oroszlán. Ezek az oroszlánok teljesen civilizáltak (egymást "élve" nem eszik meg), okosak (képesek elvont gondolkodásra), és nemutolsósorban nagyon éhesek, lévén hogy a szigeten rajtuk kívül nincsen semmi.

Néhány galád kutató kísérleti jelleggel elhelyez a sziget közepén egy adag mérgezett húst (a galád kutatók a feladat szempontjából nem ehetőek), és várják, hogy az oroszlánok megeszik-e. A méreg hatása az, hogy amelyik oroszlán megeszi, az elalszik, de nem hal éhen. Ha viszont elaludt, akkor inenstől kezdve őt is megehetik az oroszlántársai, ebben az esetben azonban az az oroszlán, aki megeszi őt, szintén elalszik. Röviden: ha egy oroszlán megeszi a mérgezett húst, akkor életben marad, viszont mostantól mérgezett húsként funkcionál.

Az oroszlánok okosak, tudják, hogy a hús mérgezett, és a következő elvek alapján döntenek: 1, semmilyen körülmények között nem akarnak megevődni, vagyis inkább éhenhalnak, minthogy valaki őket netán elfogyassza. 2, életben akarnak maradni, vagyis ha nem fenyeget veszély, akkor megeszik a húst, és elalszanak.

Mit fog tenni az az oroszlán, amelyik először ér oda a húshoz: megeszi-e, vagy sem?

A feladat nem túl nehéz. Igazából hasonló típusú feladatokat szeretnék gyűjteni. Hogyha van valakinek olyan feladata, ami ehhez megoldásában, vagy gondolkodásmódjában hasonlít, akkor az legyen szives elküldeni nekem.

Előre is köszi: Lacczyka

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]