Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[1191] nadorp2006-03-14 20:43:23

Két helyen is találtam példát, mindkettő Volterra konstrukcióját közli. Azt látja be, hogy létezik olyan [0,1]-en mindenhol differenciálható függvény, melynek derivált függvénye korlátos, de nem Riemann integrálható.

Előzmény: [1188] Lóczi Lajos, 2006-03-13 22:41:14
[1192] ágica2006-03-14 22:50:28

Vagy pedig, mivel g(x) csupán egy 1/\pi-s szorzóban különbözik az n-edik Bessel-függvénytől, melyre szintén teljesül ugyanez a differenciálegyenlet, így megoldható a feladat a Bessel-függvényekre vonatkozó bizonyítással teljesen analóg módon is (g(x) deriváltját számolva, majd parciálisan integrálva egy kis alakítgatás után kijön az egyenlet).

Előzmény: [1189] Lóczi Lajos, 2006-03-13 22:50:30
[1193] Lóczi Lajos2006-03-14 23:38:41

Pont ezekre a kis átalakítgatásokra gondoltam :)

Előzmény: [1192] ágica, 2006-03-14 22:50:28
[1194] Lóczi Lajos2006-03-14 23:58:40

Valóban, úgy tűnik, Volterra csinált először ilyet Riemann integrálra (ami után persze adtak később egyszerűbb példákat is). A konstrukció lényege, hogy a korlátos derivált (mértékelméleti szempontból) túl sok helyen szakad: egy "kövér" Cantor-halmazon, az ilyeneket pedig Riemann nem tudja visszaintegrálni.

A feladatban viszont nem mondtam meg, milyen integrált használjunk.

220. feladat. U. az, mint a 217. feladat, csak az integrált értsük Lebesgue értelemben.

Ez a feladat jóval könnyebb, mint a Riemannos megfelelője, és az előzetes integrálos kérdések pont ezt készítették elő.

Fontos adalék, hogy Lebesgue (1900-as évek eleje) után fél évszázaddal kidolgozták a Henstock-Kurzweil integrált, amelynek definíciója formailag alig különbözik Riemannétól, és azzal a jó tulajdonsággal bír, hogy minden [a,b] intervallumon értelmezett deriváltat vissza tud integrálni (tehát a 217. feladatbeli formulában mindig egyenlőség áll), sőt egyúttal minden, [a,b]-n Lebesgue-integrálható függvényt is tartalmaz. Ezt az integrálfogalmat nyugodtan lehetne Riemann helyett tanítani, mert a bizonyítások csak alig bonyolultabbak és cserébe sokkal többet kapunk.

Előzmény: [1191] nadorp, 2006-03-14 20:43:23
[1195] qer2006-03-15 14:43:59

218.feladatra: Először is legyen F egy tetszőleges felület, és \chi(F)=c-e+l (ahol c a felületen lévő csúcsok, e az élek, l a lapok száma). Nevezzük ezt mondjuk Euler-karakterisztikának. Az Euler-féle poliédertétel nyílván azt jelenti, hogy \chi(gömbfelület)=2.

Ezután vizsgáljuk a körlap Euler-karakterisztikáját. Ez nyílván egy pontból, egy hurokélből és egy lapból áll, azaz \chi(körlap)=1-1+1=1.Az könnyen látható, hogyha egy gömbfelületből kivágunk egy körlapot, akkor egy másik körlap marad.

Tórusz Euler karakterisztikáját (azaz k=1 esetre a kérdésre a választ) ugyanúgy számíthatjuk ki mint a körlapnál, azaz keresünk (egy lehetőleg minél egyszerűbb) felbontást. Vegyünk egy tóruszt, húzzunk be egy délkört, majd ottt vágjuk szét, de jegyezzük meg, hogy azok összetartoznak. Ha kiegyenesítjük, akkor egy hengerpalástot kapunk. Itt egy "magasság" mentén vágjuk szét a felületet, és ha kiegyenesítjük, akkor egy téglalapot kapunk, ahol a szemközti élek összetartoznak (azaz képzeletben összeragasztjuk őket). A két él egy pontban metszi egymást. Így \chi(tórusz)=1-2+1=0.

Hogy meghatározhassuk más k-ra is az értéket, először is vegyünk egy tetszőleges F felületet, majd vágjunk ki belőle egy körlapot, vizsgáljuk, hogyan változik az Euler-karakterisztikája. Nyílván, ha egy lapot távolítunk (ami olyan mintha egy körlapot), akkor eggyel kevesebb lapja lesz az F felületnek, azaz l helyett l-1-et kell venni, azaz eggyel csökken az Euler-karakteriszika.

Ha két felület adott (mondjuk F és G), mindkettőből eltávolítunk egy-egy körlapot, majd a körlapon úgy veszünk fel csúcsokat, hogy mindkettőn ugyanannyi számú legyen (ez nyílván nem változtatja meg az Euler-karakterisztiká, mivel egy új ponttal egy új él is keletkezik), és a csúcsokat és az éleket összeragasztjuk, akkor a keletkező felület Euler-karakterisztikája egyenlő lesz \chi(F)+\chi(G)-2-vel.

Tórsuz úgy kapunk ha egy gömböt és tóruszt összeragasztunk, így \chi(k=1)=2+0-2=0 (persze ez nem újdonság,az eredmény az lett, amit vártunk). k=2 eset a k=1-re kapott felületből származik, ha még egy tóruszt ragasztunk hozzá, így \chi(k=2)=0+0-2=(2+0-2)+0-2=2-2*(-2)=-2. Folytatva, tetszőleges k-ra, azt kapjuk, hogy \chi(k)=2-2k.

Előzmény: [1187] Csimby, 2006-03-13 19:56:42
[1196] qer2006-03-15 16:13:23

219.feladatra:

Ez csak egy sejtés, de talán jó. k=1,2,3-ra (szerintem érdektelen) de nyílván jó a gömbfelület. k=4-re is a gömbfelület jön ki, elég egy tetraédert vizsgálni. k=5,6,... értékekre szerintem egy egyoldalú rendre 0,-2,... Euler-karakterisztikájú felület a megfelelő.

Előzmény: [1187] Csimby, 2006-03-13 19:56:42
[1197] ágica2006-03-15 16:34:26

:)

g'(x)=\int_0^{\pi}\sin{(ny-x\sin{y})}\sin{y}dy

ez parciálisan integrálva:

[-\cos{y}\sin{(ny-x\sin{y})}]_0^{\pi}+\int_0^{\pi}(n-x\cos{y})\cos{(ny-x\sin{y})}\cos{y}dy

itt az első tag nulla, a második tagot pedig felbonthatjuk két integrál különbségére:

n\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-x\int_0^{\pi}(1-\sin^2{y})\cos{(ny-x\sin{y})}dy

ennek második tagját még tovább bontva kapjuk:

n\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-xg(x)-xg''(x)

szorozzuk végig x-szel az egyenletet:

xg'(x)=nx\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-x^2g(x)-x^2g''(x)

az integrálos tagról könnyen belátható, hogy n2g(x)-el egyenlő, ugyanis:

nx\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-n^2g(x)=

=-n\int_0^{\pi}(n-x\cos{y})\cos{(ny-x\sin{y})}dy=

=-n[\sin{(ny-x\sin{y})}]_0^{\pi}=0

innen pedig már csak át kell rendezni.

Egyébként, lehet hogy hülye kérdés, de mi indokolta a Bessel-függvények definiálásakor azt az 1/\pi-s szorzót? (Mondjuk gondolom más "hasznuk" is van azon túl, hogy többek között ők is megoldják ezt a differenciálegyenletet.:)

Előzmény: [1193] Lóczi Lajos, 2006-03-14 23:38:41
[1198] Lóczi Lajos2006-03-15 17:51:28

Szép. Az \frac{1}{\pi} tényezőnek amúgy semmi más szerepe nincs, csak egy normáló tényező, hogy a Bessel-függvények integrálja 0-tól \infty-ig 1 legyen.

Előzmény: [1197] ágica, 2006-03-15 16:34:26
[1199] qer2006-03-15 18:11:53

Ezt nagyon elnéztem, k=5,6,7-re mind megfelel az egyoldalú, 0 Euler-karakterisztikájú felület (két projektív sik összege).

Előzmény: [1196] qer, 2006-03-15 16:13:23
[1200] jonas2006-03-18 19:00:58

Másrészt 7-ig egy közönséges tórusz is megfelel.

Előzmény: [1199] qer, 2006-03-15 18:11:53

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]