Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[3612] SztranyákA2012-10-14 11:50:43

Úgy látszik, nem lett annyira érdekes a feladat. Akkor megmutatnék egy megoldást.

Az 1.)-re Jonas példája rendben van.

A 2.)-ra azt fogjuk megmutatni, hogy nem lehetséges, hogy 11 egymást követő egész szám közül ki lehet választani 10 különbözőt, úgy, hogy azokkal kitölthető jól a bűvös ötszög.

Indirekt tegyük fel, hogy ilyen kiválasztás, és elrendezés lehetséges. Nyilván akkor lehetséges az is, hogy az 1,2,...,10,11 számok közül hagyunk el egyet, és a maradék 10 számmal töltjük ki a bűvös ötszöget. Legyen V: a vonalakon szereplő 4-4 szám összege, míg S: az ötszögben szereplő 10 szám összege.

Mivel minden az ötszögben szereplő szám két vonalon szerepel 2S=5V\implies5|2S\implies5|S

Mivel S=1+2+...10+11-"a hiányzó szám"=66-"a hiányzó szám", ezért "a hiányzó szám" csak az 1,6,11 közül kerülhet ki. Ha az 1-t, vagy a 11-t választjuk, akkor Lórántfy 3605-s feladatát kapjuk (az hasonlóan, ahogy most fogunk dolgozni megmutatható, hogy nem teljesíthető!), így válasszuk kimaradónak a 6-t!

Vagyis most S=66-6=60 , és így V=2S/5=24.

V=24, ami 3-mal osztható. Vagyis minden vonalon a 4 szám összegének 3-mal oszthatónak kell lennie! Most csoportosítsuk a 10 ötszögbe került számunkat a 3-as maradékaik szerint! 2db 0 maradékot ad (3,9), 4 darab 1 maradékot ad (1,4,7,10), és 4 darab 2 maradékot ad (2,5,8,11) 3-mal osztva. A 3-asra, és a 9-re fogunk figyelni!

Bármely két vonalnak egyértelműen létezik metszéspontja, így az ötszögbe került bármely két A,B számhoz (akár egy vonalon vannak, akár nem) van legalább egy harmadik olyan C szám, mellyel mindketten egy vonalon vannak (hiszen minden számra pontosan két vonal illeszkedik, azaz A,B-nek létezik legalább egy-egy nem közös vonala), méghozzá úgy, hogy A,B,C nincs mind egy közös vonalon.

Legyen A=3, B=9, és vizsgáljuk C-t! Mivel C nem osztható 3-mal 1,vagy 2 maradékot ad.

Legyen most C 1 maradékot adó. Az A,C vonalon lévő két másik szám is 1-1 maradékot kell adjon 3-mal osztva (mivel egyik sem adhat 0 maradékot, hiszen B más vonalon van)! Hasonlóan a B,C vonalon lévő másik két szám is 1 maradékot kell adjon! Igen ám, de akkor C, az A,C vonal két másik száma, illetve a B,C vonal két másik száma, azaz 5 különböző szám ad 3-mal osztva 1 maradékot, ami lehetetlen! (Ha abból indulunk ki, hogy C 2 maradékot ad, akkor pedig 5 darab 2 maradékot adó különböző számunk lenne!)

Ellentmondáshoz jutottunk, vagyis valóban lehetetlen a feltételeknek megfelelő bűvös ötszöget csinálni.

Előzmény: [3609] SztranyákA, 2012-10-07 11:10:56
[3613] lorantfy2012-10-14 21:52:02

Szép megoldás és általánosabb is mint amit az eredeti feladat kívánt. Az eredetit is hasonlóan, még egyszerűbben be lehet látni.

Előzmény: [3612] SztranyákA, 2012-10-14 11:50:43
[3614] lorantfy2012-10-14 21:58:35

540. Egy bank páncélszekrényén 6 zár van. Kulcsaikat úgy osztották el a 4 pénztáros között, hogy a páncélszekrény kinyitásához legalább hármójuknak jelen kell lennie, de mind a négynek nem. Egy zárhoz többüknél is van kulcs, illetve egy pénztárosnál több kulcs is van. Hány olyan kulcs elosztás van, melynél mindegyik pénztáros ugyanannyi kulccsal rendelkezik?

[3615] HoA2012-10-15 14:13:30

A feladat korábban szerepelt itt a fórumon abban a változatban, hogy egy 5 tagú bizottságból 3 tag jelenléte szükséges a páncélszekrény kinyitásához. Az ott közölt megoldás itt is alkalmazható.

Igaz-e, hogy csak olyan kulcs elosztás létezik, melynél mindegyik pénztáros ugyanannyi kulccsal rendelkezik?

Előzmény: [3614] lorantfy, 2012-10-14 21:58:35
[3616] lorantfy2012-10-16 17:04:31

Köszi! Jó, hogy pont én tettem fel. 500. feladat volt.

Előzmény: [3615] HoA, 2012-10-15 14:13:30
[3617] HoA2012-10-16 21:28:34

Az meg már nem matematika hanem pszichológia, hogy miért emlékeztem 5 tagú bizottságra a 4 pénztáros helyett.

Előzmény: [3616] lorantfy, 2012-10-16 17:04:31
[3618] Lóczi Lajos2012-11-06 19:28:38

Az a valós paraméter értékétől függően számítsuk ki az alábbi határértéket:

\lim_{k\to\infty} k^{a-1} \left(k^{a/k}+2 k^{\frac{a+k}{k}}-16 k^2 \left(2^{a/k}-1\right)\right)

[3619] nadorp2012-11-08 11:51:04

Egy próbálkozás:

\matrix { \alpha<0               & 0 \cr\cr
           \alpha=0               & 2 \cr\cr
           0<\alpha<\frac1{8\ln2} & \infty \cr\cr
           \alpha=\frac1{8\ln2}   & 0 \cr\cr
           \alpha>\frac1{8\ln2}   & -\infty}

Előzmény: [3618] Lóczi Lajos, 2012-11-06 19:28:38
[3620] Lóczi Lajos2012-11-08 12:42:38

Egyetértek (amennyiben \alpha=a) :)

Előzmény: [3619] nadorp, 2012-11-08 11:51:04
[3621] ibiro2012-11-17 23:23:49

Határozzuk meg az összes a és b primszámot melyekre 2a-5b=19 .

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]