Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]  

Szeretnél hozzászólni? Jelentkezz be.
[193] lorantfy2003-12-13 11:00:24

34.c) feladat b része

Ha a füzeteket áruló néni előrehívja azt az „x” számú embert aki 500 Ft-al tud fizetni, akkor miután eladta nekik a füzetet (k+x) 500Ft-os bankjegye lesz, hogy visszaadjon a megmaradó (n-x) 1000 Ft-al fizetőnek. Mikor nem tud visszaadni? Ha

 k+x \le n-x \quad \implies \quad x \le \frac{n-k}{2}

(Egyenlőség NINCS, csak nem találok külön kisebb jelet! Segítség!)

Legyen  m=\frac{n-k}{2} (Elnézést! Az előző hozzászólásban ezt rosszul írtam!)

Tehát, ha az n ember közül csak 0,1,2 … m-1 tud 500 Ft-al fizetni, akkor nem tud a néni visszaadni. Ezen esetek összege:

 \binom{n}{0}+\binom{n}{1}+\binom{n}{2}+...+\binom{n}{m-1}

A p2 valószínűség, (2n az összes esetek száma)

p_22^n=\sum_{i=1}^{m-1} \binom{n}{i}

Tehát p1=2p2

Előzmény: [192] lorantfy, 2003-12-12 23:59:35
[192] lorantfy2003-12-12 23:59:35

Kedves Fórumosok!

Érdemes "beleélni" magatokat ebbe a füzeteladási feladatba, mert bár lassan de szépen alakul.

Próbáljuk megfogalmazni a bináris fa alapján készült előző táblázat eredményét általánosan.

k db 500 Ft van kezdetben az eladónál és n emberünk van.

Legyen az egyszerűbben írhatóság kedvéért k és n páros!

m=\frac{k}{2}, E= az eladott könyvek száma, S=esetek száma.

E= ... k k+1 k+2 k+3 ... n-4 n-3 n-2 n-1 n
S= 0 \binom{n}{0} \binom{n}{0} \binom{n}{1} \binom{n}{1} \binom{n}{m-2} \binom{n}{m-2} \binom{n}{m-1} \binom{n}{m-1} \sum

Az, hogy a néni valamikor nem tud visszaadni azt jelenti nem adott el minden könyvet. Ezen esetek számának összege:

p_12^n=2\sum_{i=0}^{m-1}\binom{n}{i}

Megvan a 34.c) feladat a) részének p1 valószínűsége.

Már csak azt kell belátni, hogy

p_22^n=\sum_{i=0}^{m-1}\binom{n}{i}

de erre már csak holnap kerülhet sor. :-)

Előzmény: [191] lorantfy, 2003-12-12 00:48:45
[191] lorantfy2003-12-12 00:48:45

Kedves Fórumosok!

Egy rövid folytatásra futotta ma az időmből, remélve, hogy lesz aki bekapcsolódik.

Ha k értékét 1-el növeljük akkor azon esetekben, ahol eddig 0 db-ot adtunk el, most 1-et fogunk, ahol eddig 1-et, most 2 db-ot adunk el... Az esetek száma 1-el nagyobb db-számra tolódik el. n= 5 esetében ezt mutatja a táblázat. Az 5-ös eladás oszlopában összegződnek a jobbra tolódó értékek. Jobb oldalon annak a valószínüsége \phi, hogy minden (5db) könyvet eladtunk. (Az esetek számával (25=32) osztottam az 5 db-os eladások számát.)Annak valószinüsége, hogy a néni valamikor nem tudott visszaadni 1-\phi, hiszen akkor nem adott el minden könyvet. Tehát csak ezt kell n-re megfogalmazni és megvan Géza 34.c) feladatának a) része!

k 0 1 2 3 4 5 \phi
0 1 1 5 5 10 10 \frac{10}{32}
1 0 1 1 5 5 20 \frac{20}{32}
2 0 0 1 1 5 25 \frac{25}{32}
3 0 0 0 1 1 30 \frac{30}{32}
4 0 0 0 0 1 31 \frac{31}{32}
5 0 0 0 0 0 32 1
Előzmény: [186] lorantfy, 2003-12-10 13:41:47
[190] Hajba Károly2003-12-12 00:23:33

Kedves László!

Gratula!

HK

Előzmény: [189] lorantfy, 2003-12-11 22:40:16
[189] lorantfy2003-12-11 22:40:16

Megoldás a 43. feladatra:

A háromszög körülírt körének O középpontja csak akkor van a háromszög kerületén, ha az derékszögű. Ekkor viszont az M magasságpont a derékszögű csúcsba esik. Így OM = R= AB/2, OM csak a rövidebbik befogóval egyezhet meg. Tehát a háromszög szögei 30-60-90 fok. Szerkesztése: 2OM=AB fölé Thálesz kört, aztán A-ból OM=R-el körözve kimetszük a C pontot. (A feladat szövegében ez áll:„tudjuk, hogy e szakasz egyik végpontja egyben a háromszög egyik pontja is” - ez csak annyit jelent, hogy azt még nem tudjuk, hogy a másik végpontja is (De mostmár tudjuk!), nem pedig azt, hogy a másik végpontja nem lehet a háromszög pontja)

Euler egyenes: A háromszög O, S, M ponjai erre az egyenesre esnek. Ráadásul MS=2OS.

Aki kíváncsi az Euler egyenes nevezetes pontjai és a beírt kör K középpontjának kapcsolatára, nézze meg a „Nehezebb matematikai problémák” témában Rácz Béla 7. feladatát.

Előzmény: [188] Hajba Károly, 2003-12-11 01:06:29
[188] Hajba Károly2003-12-11 01:06:29

Elnézést, pontosítok:

43. feladat: Legyen adott egy háromszög Euler-féle OM szakasza; tudjuk, hogy e szakasz egyik végpontja egyben a háromszög egyik pontja is ill. a háromszög egyik oldalhossza megegyezik az OM szakasz hosszával. Szerkesszük meg a háromszöget!

HK

Előzmény: [187] Hajba Károly, 2003-12-11 01:03:40
[187] Hajba Károly2003-12-11 01:03:40

35. feladat: Legyen adott egy háromszög Euler-féle OM szakasza; tudjuk, hogy e szakasz egyik végpontja egyben a háromszög egyik pontja is ill. a háromszög egyik oldalhossza megegyezik az OM szakasz hosszával. Szerkesszük meg a háromszöget!

HK

[186] lorantfy2003-12-10 13:41:47

Kedves Fórumosok!

Reméltem, hogy valakinek megtetszik ez a bináris fa, de még nem késő! Felírtam a csúcsokhoz az eladások számát. A táblázatban az első oszlopban az n értéke, a következő oszlopokban az áll, hogy adott n esetén hány esetben volt 0,1,2,3,4,5 füzet eladás.

n 0 1 2 3 4 5
1 1 1  
2 1 1 2
3 1 1 3 3
4 1 1 4 4 6
5 1 1 5 5 10 10

Ezek a számsorok mindenkinek ismerősek (Pascal hrsz. Binomiális tétel) A sorrend kicsit más. Remélhetőleg valaki be is bizonyítja, én most csak ebből a pár értékből általánosítok: Legyen  \frac n2 egész része: m. Ekkor a 2n esetből  \binom nm esetben fogunk n db füzetet eladni k=0 befektettéssel. Következik k értékének 1-el való növelése. Ekkor ennek a fának a jobb oldali (fél) részfájára kell áttérni.

Előzmény: [184] lorantfy, 2003-12-09 12:37:33
[185] Kós Géza2003-12-10 13:16:34

Egy kis érdekesség.

Továbbra is feltételezzük , hogy a vendégeknél 50-50% valószínűséggel van egyetlen 500 vagy egyetlen 1000 forintos bankjegy. A vendégek száma n, a jegyszedőnél kezdetben k darab 500 forintos van.

a) A vendégek véletlenszerűen sorbaállnak, fizetnek, a jegyszedő néni visszaad, ha tud. Jelöljük p1-gyel annak a valószínűségét, hogy valamikor nem tud visszaadni.

b) A jegyszedő úgy dönt, hogy a sorban előrehívja azokat, akiknél 500 forintos pénz van. Jelöljük p2-vel annak a valószínűségét, hogy így sem sikerül mindenkinek visszaadni.

34.c feladat. Bizonyítsuk be, hogy ha n és k azonos paritású, akkor p1=2p2.

(A Catalan-számokat jól ismerők előnyben!)

Előzmény: [138] Ratkó Éva, 2003-12-03 14:33:47
[184] lorantfy2003-12-09 12:37:33

Pontosítás az előzőhöz:

A következő vevőnek 50% eséllyel van 500 Ft-osa és 50%, hogy 1000 Ft-osa van. Ez végig állandó. (Nem függ attól, hányan fizettek már pl. 1000 Ft-al.)

Előzmény: [183] lorantfy, 2003-12-09 01:07:25
[183] lorantfy2003-12-09 01:07:25

Kedves Éva!

Egy újabb próbálkozás:

34.b feladat

n db füzetet szeretnénk eladni n embernek. A füzet ára 500 Ft. Az emberek felének van 500 Ft-ja, másik felének csak 1000 Ft-osa van.

1.Ha 1000 Ft-al akar fizetni valaki és nincs 500 Ft-unk vissza, akkor nem vesz, ha tudunk visszaadni, akkor vesz.

2.Ha 500 Ft-al fizet valaki, akkor persze vesz füzetet és lesz egy visszaadható 500 Ft-unk.

Mennyi a valószinüsége, hogy mind az n könyvet eladjuk:

1.Ha kezdetben nincs 500 Ft-osunk (k=0)

2.Ha k db 500 Ft-ossal indulunk.

Árázoljuk az eseményeket egy bináris fával. A csúcsokba írjuk az 500 Ft-osaink számát. Az élek szine kék ha vettek, piros, ha nem vettek füzetet. Ha jobbra lépek 500 Ft-al fizettek, ha balra akkor 1000 Ft-al. Piros a vonal, ha nullás pontból balra lépünk, különben kék. Az összes eset száma 2n. Ahány kék vonallal jutunk le, annyi füzetet adtunk el.

Próbáljátok általánosítani! n=5 esetén a következő értékek adódnak:

k=0 : 50%, k=1 : 62,5%, k=2 : 78%, k=3 : 93%, k=4 : 97%, k=5 : 100

Előzmény: [181] Ratkó Éva, 2003-12-08 17:17:54
[182] Pach Péter Pál2003-12-08 20:18:19

Két újabb feladat:

41. feladat

Legyenek a,b,c,d,e egész számok. Tudjuk, hogy összegük és négyzetösszegük is osztható a páratlan p számmal. Bizonyítsuk be, hogy ekkor a5+b5+c5+d5+e5-5abcde is osztható p-vel.

42. feladat

Legyenek P és Q pozitív páratlan relatív prím számok. Bizonyítsuk be, hogy

\sum_{0<x<\frac{Q}{2}}{\left[\frac{Px}{Q}\right]}+\sum_{0<y<\frac{P}{2}}{\left[\frac{Qy}{P}\right]}=\frac{(P-1)(Q-1)}{4}.

[181] Ratkó Éva2003-12-08 17:17:54

Kedves Mindenki!

Ajánlom figyelmetekbe a 34. feladatot, amit nem én találtam ki, hanem egy valóban létező probléma. (A színházat nem akartam megnevezni, nem az a lényeg.) És kíváncsi vagyok, együttes erővel lehet-e vele valamit kezdeni.

Előzmény: [142] lorantfy, 2003-12-04 00:37:11
[180] Hajba Károly2003-12-08 10:43:39

40. feladat: Tekintsük az ábra szerinti M*N-es lapocskát a kör helyekkel, melynek d szimmetriatengelye van. Képezzük az összes (n) olyan változatot, melyben k szinezett korongot helyeztünk el és sem tüktözéssel, sem forgatással két változatot nem lehet egymásba mozgatni. Mennyi n értéke M, N és k függvényében?

Kedves Topikolók!

Bevallom, a fenti feladatot kitaláltam, de a választ rá nem tudom, még nem találtam meg a pontos összefüggést, így szabad a gazda, a válasz engem is nagyon izgat. :o)

HK

[179] lorantfy2003-12-08 07:49:21

Kedves Károly!

Igazad van. Annyira belelkesedtem, hogy az 5x5-ösből rögtön kijön a 7x7-es, hogy nem olvastam el az eredeti kiírást, miszerint záródnia kell. Majd próbálkozom...

Előzmény: [178] Hajba Károly, 2003-12-07 23:26:47
[178] Hajba Károly2003-12-07 23:26:47

Kedves László!

Elmesélem a feladattal kapcsolatos történetemet. Még elsős gimis lehettem, mikor feladták nekem, a feladója sem ismerte a megoldást. Fél évig görcsöltem rajta és kb. 12 vissza nem záródó megoldást találtam, míg meg nem leltem azt, amelyik az eredeti kiírásban is szerepel. Miszerint vissza kell záródnia a kiindulási pontba.

Tehát eddig a könnyebbik változata lett megoldva és sok sikert kívánok a nehezebbik megoldásához.

HK

Előzmény: [177] lorantfy, 2003-12-07 23:17:49
[177] lorantfy2003-12-07 23:17:49

és a 12. feladat behúzása 12 szakasszal.

Előzmény: [60] Hajba Károly, 2003-11-13 00:31:47
[176] lorantfy2003-12-07 23:11:25

Kedves Károly!

Adom a megoldást a 39. feladatra és így megvan az elmaradt 12. feladat is.

Előzmény: [169] Hajba Károly, 2003-12-06 00:29:36
[175] lorantfy2003-12-07 14:26:31

Kedves Gyuri!

Itt pedig mindhárom pontban egyetértek veled! Kezdem felfogni a lényeget, bár ez a rekurzív gondolkodás nem embernek való. Nem értelmeztem helyesen a szöveg azon részét, miszerint:

"azt csak a kivégzés napján reggel 6 órakor tudhatja meg az elitélt leghamarabb"

Tehát nem is kell megmondani neki előtte, hogy ki fogják végezni.

(A 3. pontból azonban kiderült, hogy nincs technikai akadálya annak a kérésemnek, hogy írj ékezettel! Előre is köszönöm!)

Előzmény: [173] Gyuri, 2003-12-06 01:58:29
[174] lorantfy2003-12-07 13:25:38

Kedves Gyuri!

Egyetértek veled mindkét pontban! (Most nem a kivégzéses példáról beszélek!)

Miért nem nyitottál egy Versenyfeladatok c. témát?

Persze a túl sok téma sem szerencsés, de ez a a téma már olyan gyorsan pörög, hogy sokszor "oldalakat" kell visszamenni egy hivatkozásért.

Aztán arra gondoltam kellene még egy olyan téma, ahol az új emberkéknek tennénk fel példákat, és csak első megoldó fórumosok tehetnének fel megoldást.

Tegnap ugyanis mikor beléptem a fórumba próbáltam elképzelni, hogy még átlagos középiskolás vagyok. Megtetszett egy feladat és próbáltam megoldani, de mire elszántam magam, hogy feltegyem a megoldást már valaki megelőzött. Szóval elment a kedvem az egésztől.

Én megnyitom ezt a két témát, aztán az idő majd eldönti, hogy életképesek lesznek-e.

Előzmény: [172] Gyuri, 2003-12-06 00:46:35
[173] Gyuri2003-12-06 01:58:29

Kedves László!

1. Meg ha vasarnap hajnali 2kor is volt a targyalas, a kovetkezo het nem kezdodhet ugyanazon a napon.

2. Ha a het elso napja a vasarnap lenne, akkor az ugyved eszmefuttatasa hallatan az elitelt a hajat tepne, vagy legalabbis sirvafakadna.

3. Fálesz Mihály világított rá legjobban a lényegre [159]-ben.

Udv: Gyuri

Előzmény: [170] lorantfy, 2003-12-06 00:36:46
[172] Gyuri2003-12-06 00:46:35

Kedves Zoli!

Ket megjegyzesem lenne a meghivasos versenyeket illetoen.

1. Azt hiszem ezek a feladatok egy Versenyfeladatok vagy valamilyen hasonlo topicban lennenek igazan megfelelo helyen. Talan attol Erdekes egy feladat, hogy valami szellemesseg, csalafintasag, meglepo eredmeny vagy humor fuszerezi.

2. Nagyra becsulom, hogy megosztod ezeket a feladatokat azokkal, akik ezekre a versenyekre soha nem juthatnak el. Mindig is ugy ereztem, hogy a magyar tehetsegkutatas egy csoppet belterjes. Orulok, hogy ha egy aprosagnak tuno dologgal is, de segitesz valtoztatni ezen.

Udv: Gyuri

Előzmény: [164] SchZol, 2003-12-05 22:05:01
[171] Pach Péter Pál2003-12-06 00:41:47

Megoldás a 26. feladatra

Bontsuk két részre R(k;n)-et! A korlátos tartományok maximális száma legyen S(k;n), a nem korlátos tartományok maximális száma pedig legyen T(k;n). Először határozzuk meg T(k;n)-et! A körök csak a sík korlátos részén „tevékenykednek”, látszik, hogy T(k;n)-et az egyenesek meghatározzák. Ha elég ügyesek vagyunk, és fel tudjuk úgy venni az (0<)n darab egyenest úgy, hogy semelyik kettő ne essen egybe, akkor 2n darab végtelen tartományt kapunk, különben pedig kevesebbet.

Így T(k;n)=2n.

Már csak S(k;n)-et kell meghatároznunk. (Egyelőre feltesszük, hogy a két maximum egyszerre is megvalósulhat.) Tegyük fel, hogy már néhány egyenest és kört megrajzoltunk, és most megrajzolunk még egy kört, ami az eddigi alakzatokat összesen m darab (különböző) pontban metszi. Azt állítjuk, hogy ilyenkor pontosan m új korlátos tartomány keletkezik. Valóban, ha végigmegyünk a körvonalon, akkor két „szomszédos” metszéspontot összekötő ív mindig egy korlátos tartományt oszt két (korlátos) részre, vagy pedig egy végtelenből „vág” le egy korlátos részt.

Ehhez teljesen hasonlóan, ha egy új egyenes összesen m különböző pontban metszi az eddigi alakzatokat, akkor m-1 új korlátos tartomány keletkezik, hiszen a „szomszédos” metszéspontokat összekötő szakaszokkal 1-1 új korlátos tartományt nyerünk, a megmaradó két félegyenessel pedig egyet sem.

Ha van k-1 darab körünk, akkor egy új kör ezeket összesen lf. (legfeljebb) k pontban metszi, mert a feladat feltételei szerint mind a k darab kör áthalad 1 ponton, két (különböző) körnek pedig lf. 2 metszéspontja van. Így S(k;n)=S(k-1;n)+k, azaz S(k;n)=1+2+...+k=\frac{k(k+1)}{2}.

Ha van k-1 darab körünk, akkor egy egyenes ezeket összesen lf. k pontban metszi, hiszen a feladat kikötése szerint át kell haladnia a közös metszésponton. A már meglévő egyeneseket csak a közös metszéspontban metszi, de azt már számoltuk. Ez azt jelenti, hogy S(k;n)=S(k;0)+nk=\frac{k(k+1)}{2}+nk.

Az eddigiek alapján R(k;n)=S(k;n)+T(k;n)= \frac{k(k+1)}{2}+nk+2n. Az pedig könnyen végiggondolható, hogy létezik konstukció. (Pl.: úgy vegyük fel a k darab kört, hogy ne essenek egybe, de sugaruk egyezzen. Nem lehetséges, hogy a közös ponton kívül is van olyan pont, amelyen három kör is áthalad, mert ezen és a közös ponton keresztül adott sugárral csak két különböző kör rajzolható. Az egyenesek felvételénél csak véges sok irányt kell kizárni: ne essen egybe az előzőekkel, ne haladjon át a körök metszéspontjain, ne érintse a köröket. Ilyenkor kívánt számú metszéspont, és így kívánt számú tartomány keletkezik.)

Megjegyzés:

Úgy is megoldhatjuk a feladatot, hogy invertálunk egy olyan körre, aminek a közös pont a középpontja. Ekkor k+n darab egyenest kapunk, azonban közülük n darab egy ponton megy át.

Előzmény: [112] SchZol, 2003-11-29 21:46:42
[170] lorantfy2003-12-06 00:36:46

Kedves Gyuri!

Kínomban már nem tudok jobbat kitalálni:

Ha már vasárnap volt a tárgyalás - amikor ugye nem nagyon szoktak dolgozni a bírák - akkor mért ne lehetett volna az ítélet kihirdetése mondjuk reggel 5-kor. Így ettől kezdve ketyeg az 1 hét. Tehát akár aznap - vasárnap - reggel 6-kor már közölhetik is vele, hogy ma kivégzik.

Vagy ha a hetet szigorúan napokban számoljuk, akkor legyen olyan országban a tárgyalás, ahol a hét első napja a vasárnap és így a "következő hét" majd a következő vasárnappal kezdődik és szombattal ér véget.

Előzmény: [158] Gyuri, 2003-12-05 19:00:06
[169] Hajba Károly2003-12-06 00:29:36

Mivel eddig senki nem írt a 12. feladatról, ezért hozok néhány könnyebbet e műfajból.

39/A feladat: Kössük össze egy 6 egymásba kapcsolódó szakaszokból álló hurokkal az A szerint 4*4-es rácspontokat. (Azaz a kindulási pontba vissza kell érni!)

39/B feladat: Kössük össze egy 8 egymásba kapcsolódó szakaszokból álló lánccal a B szerinti 5*5-ös rácspontokat úgy, hogy a külső 4 sorból nem lóghat ki.

HK

[168] Ki2003-12-06 00:03:02

Ki tette fel ezt a feladatot?

Hát mostmár tudjátok! MiKi tette fel. A Mikulás.

Annyira el vagytok foglalva a feladatokkal, hogy azt sem tudjátok milyen nap van ma?

Előzmény: [137] Ki, 2003-12-03 13:54:07
[167] lorantfy2003-12-05 23:10:34

Kedves Péter, Károly és Fórumosok!

Azt hiszem a feladat szövegéből (az 5-ből 3 sapkásról van szó!) nem derült ki, hogy a börtönigazgató véletlenszerűen választ-e a sapkák közül, vagy a 7 féle minta valamelyike szerint rak fel 3-at a fejekre. (Hajlok rá, hogy ha nagy sorozatban játszaná ezt a játékot Péternek lenne igaza, hacsak nincs egy kis naptárja, amibe be van jegyezve aznap melyik mintát teszi fel a 7 közül.)

Így azt hiszem Károlynak megadhatjuk a megoldási útmutató szerinti, maximális 3-3 pontot. Péter pedig dícséretet kap "értékes megjegyzéséért"! :-)

Legközelebb beleírom az igazgató monológjába: "Most becsukott szemmel választok 3 sapkát az 5 közül, és véletlenszerűen teszem fel a fejetekre." - ,hogy pontos legyen a szöveg. (Így meg túl tudálékos lesz.)

Namost aki csak utólag olvassa a megoldást, azért érdemes átgondolni a poént. Akinek látszólag legkevesebb információja van a sapkákról - az 1. rab - annak legvalószinűbb a szabadulása. Tehát ebben az esetben, ha nincs információ (nem szólnak a hátam mögötti rabok) az is információ.

Előzmény: [161] Pach Péter Pál, 2003-12-05 21:40:50
[166] Hajba Károly2003-12-05 23:06:35

Kedves Péter Pál!

Valóban e "súlyos" hibát elkövettem. :o)

Tehát a végmegállapítás javított változata:

Tehát mindkét esetben 1 - 0,6 | 2 - 0,3 | 3 - 0,1, holott 1 nem lát senkit.

HK

Előzmény: [161] Pach Péter Pál, 2003-12-05 21:40:50
[165] SchZol2003-12-05 22:13:28

A Cornides versenyt 9.,10.,11. és 12.évfolyamosoknak szervezik. Iskolánként minden évfolyamról két embernek.

Üdv, Zoli

Előzmény: [162] lorybetti, 2003-12-05 21:50:00
[164] SchZol2003-12-05 22:05:01

Kedves Betti!

Az Iszák Imre Gyula Komplex versenyt a zalaegerszeg Zrínyi Miklós Gimnázium szervezi idén 12.alkalommal. Mindig ősszel szokott lenni. Résztvenni meghívás útján lehet. Általában 15 iskolát hívnak meg, iskolánként két 11-es vagy 12-es tanulót. A verseny két napos. Első napon van egy két órás fizika és egy két órás számtech verseny, és másnap egy két órás matek verseny. A verseny régebbi feladatait itt érheted el.

A Cornides István Matematika - Fizika versenyt a komárnoi Selye János Gimnázium szervezi, ha jól tudom 12.éve. Általában december első hetében. Ez is meghívásos verseny. Ez egy napos. Másfél-másfél óra áll rendelkezésre a feladatok megoldására.

Üdv, Zoli

Előzmény: [162] lorybetti, 2003-12-05 21:50:00
[163] lorantfy2003-12-05 21:51:29

Megoldás a 37. feladatra:

Toljuk el a CDS\Delta-et DA vektorral. S képe T pont nyilván az AB feletti a Thálesz körre kerül.

SDC\angle=TAB\angle az eltolás miatt és TSB\angle=SBC\angle, mert váltószögek.

AB feletti Thálesz körben TAB\angle=TSB\angle mert TB húrhoz tartozó kerületi szögek.

Tehát SDC\angle=SBC\angle.

Előzmény: [148] SchZol, 2003-12-04 20:09:45
[162] lorybetti2003-12-05 21:50:00

Szia Zoli!

Nem hallottam még erről a Cornides-matekversenyről.Nemrég tetted fel az Izsák Imre Gyula versenyfeladatokat. Honnan tudsz ezekről a versenyekről? Mikor és kiknek rendezik ezeket a versenyeket?

Előzmény: [148] SchZol, 2003-12-04 20:09:45
[161] Pach Péter Pál2003-12-05 21:40:50

Kedves Károly!

Szerintem van egy kis probléma a megoldással. Én úgy értelmezem a feladatot, hogy a börtönigazgató az öt sapka közül véletlenszerűen választ ki hármat, s ezeket szintén véletlenszerű sorrendben teszi a három fegyenc fejére. (Összesen 60 eset van.) Vagyis a 7 esethez tartozó valószínűségeket még súlyozni kell az esetek valószínűségével.

Természetesen ennek a megoldás lényegi részéhez semmi köze, de a végeredményen változtat.

Előzmény: [152] Hajba Károly, 2003-12-05 00:31:47
[160] Fálesz Mihály2003-12-05 19:28:42

Kedves László,

Íme itt vagyok és itt is voltam, de szeretnék csak egy néven írni. Rosszul esik, és másokkal szemben sem tisztességes, ha két különböző személynek tartanak.

Szóval Fálesz Mihály visszavonul Csicsigin A számtantanítás módszertana c. könyvébe, és a jövőben csak néha-néha fog feltűnni egy kis humor kedvéért.

Előzmény: [150] lorantfy, 2003-12-04 23:01:54
[159] Fálesz Mihály2003-12-05 19:15:15

A T. Bíróság egy jó kis gödeli problémát (Gödel rulez!) adott az elítéltnek, amire az ügyvéd még rá is tett egy lapáttal. Ha éppenséggel már vasárnap reggel 7:59 van, akkor is őrjítő bizonytalanságban marad szegény(?)...

Tudom... nem tudom ... tudom, hogy nem ... nem tudom, hogy igen vagy nem ... nem tudom, hogy mit is tudok ... az a gyanús, ami nem gyanús ...

[158] Gyuri2003-12-05 19:00:06

Kedves László!

Az ugyved gondolatmenetenek elso resze a vasarnapi kivegzes lehetosegenek kizarasara iranyul. Azaz, indirekt felteszi, hogy a kivegzes vasarnap lesz. Ez esetben azonban biztositva van, hogy az elitelt meg eljen szombat este. Ebben semmi helytelen nincs! (Ha holnaputan fogok meghalni, akkor holnap meg elek. Az tuti.) Eddig van igaza az ugyvednek. Ezutan azt allitja, hogy ez esetben az elitelt mar tudna, hogy vasarnap vegzik ki. Hosszabban irva: ha az elitelt meg szombat este el, akkor tudja, hogy vasarnap vegzik ki. Nos, ez az, ami nem igaz. Ha ezt elfogadnank, akkor ugyanilyen alapon zarhatnank ki a tobbi napot is. A dog ott van elhantolva, hogy miert is vegezhetik ki vasarnap is az eliteltet.

Tehat az ugyved nem ugy gondolkodik, hogy Ha szombat estig eletben hagynak, hanem ugy, hogy Ha vasarnapra terveznek a kivegzest. Mivel ebbol ellentmondasra jut (helytelen gondolatsorral), ezert az eredeti feltevese hamis volt, azaz nem lehet vasarnap a kivegzes.

Megjegyzes: Kepzeljuk el, hogy ket minden hajjal megkent bunozo pokerezik. Az egyik bejelenti, hogy Royal Flush-e van. Mire tud ebbol kovetkeztetni a masik? (ha profik, akkor semmire)

Előzmény: [157] lorantfy, 2003-12-05 18:27:14
[157] lorantfy2003-12-05 18:27:14

Kedves Károly, Gyuri és Fórumosok!

Az ügyvédeknek nem szabad bedőlni és persze az ügyvédes feladatoknak sem!

Az egész megoldás csak ennyi (próbálom részletezni amit [143]-ban leírtam):

Amikor az ügyvéd azt mondja: Ha szombat estig életben hagynak, akkor már vasárnap nem végezhetnek ki… akkor valójában a következő feltételre támaszkodik: Ha szombat estig nem végeznek ki, akkor vasárnap már nem végezhetnek ki. Ezzel mindenki egyet is ért és nem is gondol arra, hogy a kiinduló feltétel hamis, hiszen bármelyik napon kivégezhetik vasárnap előtt. Csakhogy most ebből a hamis feltételbők kapott „igazságból” (mármint, hogy vasárnap nem végezhetik ki) kiindulva következtet visszafelé.

Valójában az ügyvéd csak ennyit állít: Ha szombat estig nem végeznek ki, akkor sem hétfőn, sem kedden, sem …szombaton nem végeztek ki és vasárnap már nem fognak. De ha szombatig kivégeznének (I’m sorry!) akkor az egész következtetés alapját vesztett hülyeség.

A megfogalmazásban (aláhúzott rész) direkt nem szerepel a kivégzés szó, helyette: életben hagynak! Az is mindegy melyik nap végzik ki. Akár hétfőn is kivégezhették volna.

Előzmény: [153] Hajba Károly, 2003-12-05 01:04:38
[156] SchZol2003-12-05 12:19:47

Itt egy másik megoldás a 36.feladatara:

\sum_{i=1}^n{\frac{s-a_i}{a_i}}\ge n(n-1)

\sum_{i=1}^n{\frac{s}{a_i}}\ge n^2

\sum_{j=1}^n{\sum_{i=1}^n{\frac{a_i}{a_j}}\ge n^2}

\bigg(\sum_{j=1}^n{\sum_{i=1}^n{\frac{a_i}{a_j}}-\sum_{i=1}^n{\frac{a_i}{a_i}\bigg)+n}\ge n^2}

Itt a zárójelben az a1,a2...ai számok összes lehetséges hányadosa szerepel, amiket párokba csoportosítva számok és reciprok összegeit kapjuk. A lehetséges párosítások száma: \frac{(n-1)n}2. Mivel minden tag pozitív ezért ezek minimuma

(n-1)n.

Ebből következik hogy a kifejezés minimuma n(n-1)+n azaz n2.

Tehát az állítást igazoltuk. Remélem semmit nem írtam el.

Előzmény: [151] Pach Péter Pál, 2003-12-04 23:35:55
[155] nadorp2003-12-05 11:35:12

Megoldás a 38. feladatra

A k=n-1 speciális esetre vonatkozó gondolatmenet szó szerint átvihető. Adjunk mindkét oldalhoz \binom{n}{k}-t. Ekkor felhasználva azt, hogy a baloldalon egy \binom{n}{k}=\binom{n}{n-k} tagú összeg van és hogy q(A)+1=\frac{s}{a_{j_1}+...+a_{j_{n-k}}}, a bizonyítandó állítás a következő lesz:

\sum_{N_n\setminus{A}}\frac{s}{a_{j_1}+...+a_{j_{n-k}}}>=\frac{n}{n-k}\binom{n}{n-k}

A számtani és harmonikus közép közötti összefüggés miatt

\frac{\sum_{N_n\setminus{A}}\frac{s}{a_{j_1}+...+a_{j_{n-k}}}}{\binom{n}{n-k}}>=\frac{\binom{n}{n-k}}{\sum_{N_n\setminus{A}}\frac{a_{j_1}+...+a_{j_{n-k}}}{s}}

Egy tetszőleges ajr elem pontosan \binom{n-1}{n-k-1} darab n-k tagú összegben szerepel, ezért a fenti egyenlőtlenség jobb oldalának nevezője éppen \binom{n-1}{n-k-1}, így a jobb oldal \frac{\binom{n}{k}}{\binom{n-1}{n-k-1}}=\frac{n}{n-k} lesz. Ez épp a bizonyítandó egyenlőtlenség.

Megjegyzés: ha a \sum egy tört számlálójában vagy nevezőjében szerepel, akkor a határok nem a \sum jel alatt vagy felett vannak. Ez az én Tex hiányosságom vagy más oka van.

Előzmény: [151] Pach Péter Pál, 2003-12-04 23:35:55
[154] Hajba Károly2003-12-05 09:16:01

31. feladat:

Gyakorlatilag a lényeget BrickTop már elmondta, de egy kicsit pontatlanul, így a faladat általa kialakított megoldását pontosítom.

A sorban az utolsó nyilatkozik először és a következő mindig az nyilatkozó előtti személy. Mivel 99 sapkát lát, az egyik páros, a másik páratlan. Ő a páros számú színt mondja. Neki így is van 50

Mindenki figyeli, hogy hányszor mondják időben előttük ezt a szint és minden elhangzáskor váltják a paritását. Továbbá mindenki tudja, hogy előtte páros vagy páratlanul van-e ez a szín, az első párosszámot lát. Amennyiben a két paritás ellentétes az adott szín van a fején, míg azonosság esetén az ellentétes szín.

Így akár 100 %-osan is megmenekülhetnek a smasszerek legnagyobb megrökönyödésére. De ha valaki elhibázza, az utánuk következőknek annyi. :o)

HK

Előzmény: [131] Gyuri, 2003-12-03 00:29:47
[153] Hajba Károly2003-12-05 01:04:38

Kedves Gyuri!

A feladat tökéletesen írja le az ügyvédeket, a tárgyalás alatt mindig minden jól áll, de a végén kiderül, hogy Ő nem teljesítménykötelmes, azaz a díja pervesztés esetén is jár neki (no meg a szája :o)

No, de térjünk vissza a feladathoz! Képzeletben játszuk el a következő játékot, melyet többszázszor is lejátszunk. A kivégzés napját véletlenül jelöljük ki és ezt ütköztetjük a különböző elképzelhető stratégiákkal, azaz ha a stratégia eltalálja a kivégzés napját +1 pontot kap, míg ha nem kap pontot. A stratégiák eredményességéből lehet következtetni a feladat megoldására is.

Az ügyvéd stratégiája nyilvánvalóan rossz, mivel egy pontot sem szerez.

A legtöbb pontot talán az a stratégia szerez, mely a kivégzés napját véletlenszerűen a H-P között határozza meg, azaz ebben az időszakban fogják kivégezni.

De mindentől függetlenül nem tudom a helyes megoldást, még az is lehet, hogy az ügyvédnek volt igaza?!

HK

Előzmény: [133] Gyuri, 2003-12-03 01:21:26
[152] Hajba Károly2003-12-05 00:31:47

Megoldás a 29. feladatra:

Legyen # - fekete, míg O - fehér sapka, továbbá az ábra szerint 3-2-1 sorszámrend:

A)

# O O

3 (azonnal): [Mivel nem lehet több fehér sapka,] fekete.

# # O és O # O

2 (kicsit később): [Mivel 3 nem szólt azonnal, így 1 és én nem mind fehér, mivel 1 fehér,] fekete.

# O #, # # #, O O # és O # #

1 (kicsit később): [Mivel 3 nem szólt azonnal, így 1 és én nem mind fehér.] (kicsit később) [Mivel 2 nem szól, nem lehetek fehér,] fekete

B)

# O O = 1: fekete :O( - 2: fekete :O( - 3: fekete :O)

# # O = 1: fekete :O( - 2: fekete :O) - 3:O(

O # O = 1: fekete :O( - 2: fekete :O) - 3:O(

# O # = 1: fekete :O) - 2:O( - 3:O(

# # # = 1: fekete :O) - 2:O( - 3:O(

O O # = 1: fekete :O) - 2:O( - 3:O(

O # # = 1: fekete :O) - 2:O( - 3:O(

Tehát mindkét esetben 1 - \frac47 | 2 - \frac27 | 3 - \frac17, holott 1 nem lát senkit.

HK

Előzmény: [128] lorantfy, 2003-12-02 21:42:13
[151] Pach Péter Pál2003-12-04 23:35:55

Megoldás a 36. feladatra

Adjunk mindkét oldalhoz n-et!

\sum_{i=1}^n{\frac{s}{a_i}}\ge n^2

s\sum_{i=1}^n{\frac{1}{a_i}}\ge n^2

\frac{s}{n}\ge \frac{n}{\sum_{i=1}^n{\frac{1}{a_i}}}

Ez viszont éppen a számtani és harmonikus középek közti egyenlőtlenség. (Pozitív számokra írtuk fel.) Ekvivalens lépéseket hajtottunk végre, így bizonyítottuk az eredeti egyenlőtlenséget.

Ez a feladat speciális esete egy általánosabb (egyébként ukrán) feladatnak. A feladat a következő:

38. feladat

a1,a2,,an pozitív valós számok és k<n.

Ha A={i1,i2,,ik}\subset{1,2,,n}=Nn és {j1,j2,,jn-k}=Nn\A, akkor legyen

q(A)=\frac{a_{i_1}+...+a_{i_k}}{a_{j_1}+...+a_{j_{n-k}}}.

Bizonyítsuk be, hogy

\sum_A{q(A)}\ge\frac{k}{n-k}\binom{n}{k}

A 36. feladatban k=n-1 volt.

Előzmény: [148] SchZol, 2003-12-04 20:09:45
[150] lorantfy2003-12-04 23:01:54

Csak a [23]-as volt, amit [36]-ban Géza félmegoldásnak értékelt - fél túrórudival - azután más nem foglalkozott vele. Fálesz Mihályt hiányolom! A nemkockafejűek témában láttam utoljára aztán nyoma veszett. Hol vagy Mihály...?

Előzmény: [149] Pach Péter Pál, 2003-12-04 22:19:50
[149] Pach Péter Pál2003-12-04 22:19:50

A [23]-as hozzászólás után Fálesz Mihály készített egy felsorolást a még megoldatlan példákról [49]-ben, és ott szerepelt a 3. feladat is. Csak nem tudtam, hogy később érkezett-e rá teljes megoldás. Szerintem mindenki nevében köszönet illet benneteket a még megoldatlan példák felsorolásáért. :-)

Előzmény: [146] Hajba Károly, 2003-12-04 12:44:52
[148] SchZol2003-12-04 20:09:45

December 3-án került megrendezésre az idei Cornides István Matematika - Fizika Emlékverseny. Íme a 12.évfolyamosok matek feladatai:

35.feladat (A verseny 1.feladata)

Határozza meg, mely p valós számokra van az

x3+px2+2px=3p+1

egyenletnek három különböző \alpha,\beta,\gamma valós gyöke, amelyre \alpha.\beta=\gamma2.

36.feladat (A verseny 2.feladata)

Jelölje s az a1,a2,...,an pozitív valós számok összegét. Igazoljuk, hogy

\sum_{i=1}^n{\frac{s-a_i}{a_i}}\ge n(n-1).

37.feladat (A verseny 3.feladata)

Az ABCD paralelogramma S belső pontjára teljesül, hogy az ASB\angle=CSD\angle=90o.

Bizonyítsuk be, hogy SBC\angle=SDC\angle.

[147] Lóczi Lajos2003-12-04 17:53:21

Kitartó voltál :-) Szép megoldás. (Annak idején, igaz teljesen más úton megközelítve, nekem sem sikerült kisebb terjedelemben leírni a megoldást.)

Előzmény: [144] Pach Péter Pál, 2003-12-04 11:03:03
[146] Hajba Károly2003-12-04 12:44:52

A [23] hozzászólásban adtak rá választ, de igaz, nem vizsgáltam megfelelőségét. Ha hibás, jöhet a helyes megoldás. :o)

HK

Előzmény: [145] Pach Péter Pál, 2003-12-04 11:03:59
[145] Pach Péter Pál2003-12-04 11:03:59

Kedves Károly!

Az emberevős példára (3. feladat - [3]) volt már megoldás?

Előzmény: [132] Hajba Károly, 2003-12-03 00:46:20
[144] Pach Péter Pál2003-12-04 11:03:03

Megoldást írok a 13.feladatra.

Azt kellett bizonyítanunk, hogy:

\cos{20^o}=\frac{1-\cos{80^o}}{\sqrt{3-2\sqrt{3}\cos{50^o}}}

Először is, a jobboldal nevezőjében a gyök alatt pozitív szám van, és így mindkét oldalon értelmes kifejezés áll, hiszen:

3-2\sqrt{3}\cos{50^o}>3-2\sqrt{3}\cdot\cos{30^o}=3-2\sqrt{3}\frac{\sqrt{3}}{2}=3-3=0

A nevezővel való átszorzás után mindkét oldalon nemnegatív szám áll, így a négyzetre emelés ekvivalens lépés:

3\cos^2{20^o}-2\sqrt{3}\cos^2{20^o}\cos{50^o}=1-2\cos{80^o}+\cos^2{80^o}

Az a célunk, hogy mindkét egyik oldalon se szerepeljen szögfüggvények szorzata. Ehhez az ismert azosságokat fogjuk használni:

2cos220o=1+cos 40o

2cos220ocos 50o=(1+cos 40o)cos 50o=cos 50o+cos 50ocos 40o=

=\cos{50^o}+\frac12 \cos{90^o}+\frac12 \cos{10^o}=\cos{50^o}+\frac12 \cos{10^o}

2cos280o=1+cos 160o=1-cos 20o

Ezeket beírva, és az egyenletet 2-vel szorozva a következőket kapjuk:

3+3\cos{40^o}-2\sqrt{3}\cos{50^o}-\sqrt{3}\cos{10^o}=3-4\cos{80^o}-\cos{20^o}

3\cos{40^o}+4\cos{80^o}+\cos{20^o}=2\sqrt{3}\cos{50^o}+\sqrt{3}\cos{10^o}

Mivel \cos{40^o}+\cos{20^o}=2\cos{30^o}\cos{10^o}=\sqrt{3}\cos{10^o}, ezért:

2\cos{40^o}+4\cos{80^o}=2\sqrt{3}\cos{50^o}

Ez valóban igaz, ugyanis:

2cos 40o+4cos 80o=2cos 40o+2cos 80o+2cos 80o=4cos 60ocos 20o+2cos 80o=2cos 20o+2cos 80o=

=4\cos{50^o}\cos{30^o}=2\sqrt{3}\cos{50^o}

Végig ekvivalens állításokat hajtottunk végre, így bizonyítottuk az eredeti állítást.

Előzmény: [65] Lóczi Lajos, 2003-11-13 18:57:33
[143] lorantfy2003-12-04 08:44:23

Kedves Gyuri!

Szerintem az a gond a gondolatmenettel, hogy nem feltételezhetjük, hogy aznap este még életben van az elitélt, mert lehet, hogy aznap reggel már kivégezték. Tehát, ha pl. szombat reggel kivégzik, akkor nyugodtan lehetne vasárnap a kivégzés (de akkor már minek). Valójában a gondolatmenet igy szól: Ha szombat reggel nem végeznek ki, akkor szombat este még élek, így tudom, hogy a kivégzés már csak vasárnap lehet, tehát az utolsó nap amikor kivégezhetnek a szombat.

A kiinduló feltételezésnek nincs semmi alapja.

Na eddig jutottam vele.

Előzmény: [133] Gyuri, 2003-12-03 01:21:26
[142] lorantfy2003-12-04 00:37:11

34.a) megoldása:

Legyen m az 1000 Ft-ossal fizetők száma.

1. Legyen m\ge0,1n

Legrosszabb esetben sajnos ez az m ember a sor elején áll és 1000 Ft-ossal fizetne. Ha tartani akarjuk a 90%-os eladást akkor ezek közül csak 0,1n nem vehet könyvet. Tehát k=m-0,1n db 500 Ft-ossal kell indulni.

2. Ha m\leq0,1n

Ekkor pedig biztos, hogy meglesz a 90%, nem kell befektetés.

Hát ez túl egyszerű közelítés. Nincs mit optimalizálni, ha ragaszkodunk a 90 %-os eladáshoz.

Előzmény: [141] lorantfy, 2003-12-03 22:00:56
[141] lorantfy2003-12-03 22:00:56

Kedves Éva!

Én elsőre még jobban egyszerűsíteném a problémát.

34.a) feladat Legyen n db műsorfüzet amit el akarunk adni és pontosan n ember aki füzetet szeretne venni. Mindenkinek vagy csak 1000 vagy csak 500 Ft-ja van. Mindenki csak egyszer próbál füzetet venni, ha nem tudunk visszaadni, akkor NEM vesz. Legyen a befektetés k db 500 Ft-os, amivel indul az üzlet.

Mennyi legyen a befektetés - k - minimális értéke, ha a füzeteknek legalább 90 %-át el akarjuk adni.

(Ez szerintem így megoldható.)

További apróságok: Minden vevővel külön foglalkozunk, tehát nem lehet pl. két embernek eladni két füzetet, úgy hogy egyikük fizet 1000 Ft-ot. Nyugodtan képzelhetjük úgy, hogy mi egy asztalnál áruljuk az n db füzetet, az a vevők szépen sorban odajönnek és megpróbálnak vásárolni. Ha 500 Ft-juk van simán megveszik, ha 1000 Ft-juk van és tudunk visszaadni szintén megveszik, viszont ha 1000 Ft-juk van és éppen elfogyott az 500-asunk akkor nem vesznek.

(Lehet először kis n-ekkel próbálkozni, vagy programot irni rá, vagy EXCEL Solver!)

Előzmény: [138] Ratkó Éva, 2003-12-03 14:33:47
[140] BrickTop2003-12-03 16:39:13

Találtam egy olyan módszert, amivel csak 1 halott lesz a fekete-fehér sapkás feladatban.

A raboknak meg kell beszélniük, hogy az első valamelyik színű sapkák párosságát jelezze. Szóval, mondjuk megbeszélik, hogy ha páros számú fekete sapkát lát, akkor azt mondja, hogy "fekete". Ha páratlant, akkor "fehér"-et mond. Az utána következő ember újból megszámolja a fekete sapkákat, és ebből ki tudja következtetni, hogy fekete sapka van-e rajta. Ha az első elítélt mondjuk "fekete"-t mond, akkor tudja, hogy a mögötte álló ember páros db. fekete sapkát látott. Így ha ő is párosat lát, akkor rajta biztos, hogy fehér van. Ha páratlant lát, akkor ő volt az egyik fekete. A 3. rab természetesen figyeli, hogy mit mondott az előtte álló, és ennek alapján ő is el tudja dönteni, hogy milyen színű sapkája van.

Előzmény: [131] Gyuri, 2003-12-03 00:29:47
[139] Hajba Károly2003-12-03 14:43:22

33. válasz:

Ki tette fel ezt a feladatot!

MindenKi tudja, ki tette fel ezt a feladatot!

Vagyok, aKi vagyok (... mondá az Úr. :o)

Csak egy valaKi nevében léphetek be a FÓRUM-ba!

??

:o)

Előzmény: [137] Ki, 2003-12-03 13:54:07
[138] Ratkó Éva2003-12-03 14:33:47

34. feladat: Az első feladat a feladat pontos megfogalmazása. Az egyik budapesti színházban árulnak az előadások szünetében (meg előtte) az adott előadásról szóló ismertető füzetet. Többen panaszkodtak, hogy a jegyszedő nénik (ők árusítják) általában nem tudnak visszaadni. Vegyük a legegyszerűbb esetet: a füzet 500 Ft, és mindenkinél csak 500 vagy 1000 Ft-os bankjegy van. Mennyi 500-assal lássuk el a jegyszedőket, hogy nagy valószínűséggel aki akar, tudjon füzetet venni?

A problémák: valamit kéne tudni arról, hogy mennyi eséllyel van valakinél "apró", és hogy előreláthatóan hányan vennének füzetet - biztos, hogy függ ezektől az eredmény. Mi legyen az a "nagy valószínűséggel"? Van 2000, 5000 Ft-os is (a többiről nem is beszélve). És van 400, 650 Ft-os ismertető füzet...

Én ennyire jutottam, arra azért lesz időm, hogy nyomon kövessem magasröptű eszmecseréteket. (Gondolom, az egyszerűbb feladat pontos megfogalmazásától majd megoldásától a bonyolultabbakéig fokozatosan el lehet jutni.)

Hajrá!

[137] Ki2003-12-03 13:54:07

33.feladat: Ki tette fel ezt a faladatot!?

Csak egy valaki tudja ki tette fel ezt a feladatot!?

Ha Te tudod ki tette fel ezt a feladatot, akkor Te ki vagy!?

Tehát ki nevében léphetsz be a FÓRUM-ba!?

Ha tudod a jelszót, ami válasz a kérdésre, hogy ki tette fel ezt a feladatot?

[136] Gyuri2003-12-03 13:29:55

Kedves Onugor!

Valoban, nem feltetlenul kapnak a rabok ugyanannyi feher illetve fekete szinu sapkat, hisz ez nem derul ki a bortonorok felhivasabol, ahogyan az sem, hogy a bortonorok mikor ertekelik a valaszokat. Segitsegul elarulom, hogy ettol nem fugg a feladat megoldasa, azaz a kiszabadithato rabok maximalis szama. Mindezektol fuggetlenul pontositom a feladatot.

kiegeszites a 31. feladathoz: A rabok nem tudjak elore, hogy hany fekete es hany feher sapkat kapnak. A bortonorok pedig csak az osszes felelet elhangzasa utan informaljak a rabokat.

Udv: Gyuri

Előzmény: [135] Hajba Károly, 2003-12-03 12:15:01
[135] Hajba Károly2003-12-03 12:15:01

Kedves Gyuri!

Ha jól sejtem nem feltétlenül 50 fekete és 50 fehér sapkát húznak a fejükre ill. az időben előttük nyilatkozók helyes v. helytelenségét figyelembe tudják venni.

Hajba Károly

Előzmény: [131] Gyuri, 2003-12-03 00:29:47
[134] lorantfy2003-12-03 08:28:48

Kedves Károly és Fórumosok!

Igyekeztem a feladatot egyértelműen megfogalmazni, de úgy látszik nem sikerült.Elnézést! Most pontosítok:

Az ábra egy esetet mutat a lehetséges esetek közül.

b) Ha a feltétel nem teljesül, a rab nem szólal meg. Ekkor a következő jön. A 3. rab után újra az 1. rab következik.

Előzmény: [130] Hajba Károly, 2003-12-03 00:07:57
[133] Gyuri2003-12-03 01:21:26

Kicsit megmozgatta a fantaziamat a borton, ime meg egy orokzold. Itt mar nem csak matematikarol van szo, talan.

32. feladat: az elitelt egy hete

A megrogzott bunozore a birosag a legszigorubb iteletet szabja ki. A biro a buntettek kulonos sulyossaga es nagy szama miatt meggondolatlanul (vagy eppen jol megfontoltan) megprobalja meg nehezebbe tenni az elitelt eletenek utolso nehany napjat. A kovetkezokeppen fogalmazza meg a buntetest: Ma vasarnap van. A kovetkezo het valamelyik napjan reggel 8 orakor lesz a kivegzes. De hogy pontosan melyik nap, azt csak a kivegzes napjan reggel 6 orakor tudhatja meg az elitelt leghamarabb; ha ugyanis hamarabb tudomast szerezne a kivegzes idopontjarol, nem vegezheto ki. KOPP! A bunozo -gondolva, hogy hamarosan bucsut mondhat ennek a vilagnak- szomoruan ballag vissza cellajaba, ahol mar varja -feltunoen vidaman- egyik ugyvedje. Az ugyved a kovetkezo ervelessel all elo: On megmenekult. Elmondom, miert. Ha Ont vasarnap akarnak kivegezni, akkor szuksegkeppen szombat estig eletben kell tartaniuk. Ha tehat On szombat este meg el, biztos lehet benne, hogy vasarnap akartak kivegezni, hisz mas alkalmas nap mar nem adodik. Igy az itelet szerint el kell vessek megiscsak a vasarnapi kivegzes otletet, hisz On erre mar szombat este rajonne. Roviden szolva, Ont nem vegezhetik ki vasarnap. Ha Ont szombaton akarnak kivegezni, akkor szuksegkeppen pentek estig eletben kell tartaniuk. Ha tehat On pentek este meg el, biztos lehet benne, hogy szombaton akartak kivegezni, hisz azt mar elozoleg belattuk, hogy a vasarnap nem johet szoba, igy csak a szombat maradna. Igy az itelet szerint el kell vessek megiscsak a szombati kivegzes otletet. ... Ha Ont hetfon akarnak kivegezni, akkor On ezt mar elore tudna, hisz mar kizartuk a keddet, a szerdat, ..., a vasarnapot. Igy tehat a hetfo is kizarva. Ont nem vegezhetik ki egyetlenegy napon sem! A tortenetnek szomoru vege szakad, mikor csutortok reggel az ugyved legnagyobb meglepetesere az eliteltet kivegzik.

Kerdesek: Igaza volt-e az ugyvednek? Helyesen jartak-e el a vegrehajtok?

Megjegyzes: Ha valaki tarsasagban hosszantarto vitat szeretne kirobbantani, megfelelo modszer a fenti feladat kozzetetele. :)

udv: Gyuri

[132] Hajba Károly2003-12-03 00:46:20

Az eddig még megoldatlan korábbi feladatok:

12. - [60]

13. - [65]

26. - [112]

27. - [113]

Továbbá a más topikba küldött méricskélős feladatok, de a megoldásokat abban a topikba adjátok.

Hajba Károly

[131] Gyuri2003-12-03 00:29:47

31. feladat: rabok sapkai 2

Bizonyara ez is sokak altal ismert, de igencsak passzol ide.

A bortonorok unalmukban, vagy talan a kozelgo Karacsonyra valo tekintettel egy jatekot eszelnek ki az intezmenyben sinylodo 100 embertarsuk szamara. Igy hangzik a jatekra valo felhivas: Holnap sorba allitunk benneteket, mindenki csak az elotte allokat fogja latni. Mindenki kap a fejere egy-egy sapkat is, mely vagy feher vagy fekete lesz. Mindenki csak egyszer szolalhat meg, es csak e ket szin egyiket mondhatja. Ahanyan eltalajak a fejukon levo szint, szabadok. Mit javasoljunk a szerencsetleneknek, ha a biztosan megszabadulok szamat akarjuk maximalizalni?

Udv: Gyuri

[130] Hajba Károly2003-12-03 00:07:57

Kedves László!

Nem veszünk össze a 29-es számon, s hogy félreértés se essen belőle, gyorsan megoldom. :o)

a)

Ha (1) és (2) fehér sapkát viselt volna, (3) azonnal szólna: én fekete vagyok.

Mivel (3) nem szól azonnal, így (1) és (2) is tudja, hogy nem lehetnek mindketten fehérek. Mivel (2) látja a fehér sapkát, ő csak fekete lehet és a biztos információ tudatában szól: én fekete vagyok és szabad.

Ha (1) fekete lenne, (2) nem lenne biztos információ tudatában és nem szólna. Mivel mégis szólt és nem vitték vissza a cellába, (1) tudja, hogy ő fehér és szól: én fehér vagyok, de elkéstem.

Mivel (3) nemszólalásából csak (1) és (2) kapott számukra nem ismert információt, így szegény (3) hoppon maradt új információ terén. Az ő esélye \frac23 a feketére és \frac13 a fehérre. Így (3) nem tippel.

b)

(1)-nek \frac35 esélye van a fekete sapkára, így visszaviszik dupla büntetéssel. (2)-nek \frac34 esélye van a feketére és kiszabadul. (3)-nak \frac23 esélye van a fekete sapkára, de későn jutott szóhoz.

Üdv: HK

Előzmény: [128] lorantfy, 2003-12-02 21:42:13
[129] lorantfy2003-12-02 22:50:07

Kedves Károly!

Most veszem észre, hogy rosszul számoztam az előző feladatot és így „felülírtam” a Te példádat. Most beírok egy megoldást és majd egyezkedünk a 29-es számon.

Egy személynek 2 nagymamája, 2 nagyapja, 4 dédmamája és 4 dédapja van a családfán.

29.a) Nagymamáink dédapjai: 2 nagymamánknak összesen 8 dédapja van.

Dédmamáink nagyapjai: 4 dédmamánknak összesen 8 nagyapja van.

29.b) Összesen persze nem 16-an vannak, mert közöttük van 4 azonos személy.

A nagymamák édesanyjai dédmamák, így a nagymamák anyai ágon vett dédapjai egyben a dédmamák nagyapjai. Ők nagymamánként ketten vannak, összesen négyen.

Tehát a nagymamáink dédapjai és a dédmamáink nagyapjai összesen 12-en vannak

Előzmény: [121] Hajba Károly, 2003-12-01 11:35:26
[128] lorantfy2003-12-02 21:42:13

Kedves Károly!

Nagyon tetszik a megoldás „előadása”. Én is be akartam írni, de így nem sikerült volna.

Mondok inkább egy másik feladatot, ami erről jutott eszembe:

29. feladat:

Karácsonykor a börtönigazgató, aki nagyon szereti a logikai feladatokat magához rendeli a három legdörzsöltebb rabot. Sorba állítja őket egymás után és mutat nekik 5 sapkát, 3 fekete színűt és 2 fehéret és ezt mondja nekik: - Most bekötöm a szemeteket és mindegyikőtök fejére felteszek egy sapkát az 5 közül. A maradék sapkákat elteszem, majd leveszem a kötést a szemetekről. Aki először megmondja milyen sapka van a saját fején, az kiszabadul. Aki viszont rosszat mondana, annak megduplázom a büntetését.

Kérdés: Mennyi az egyes rabok kiszabadulásának valószínűsége? Ha:

a): A rabok nagyon unják már a börtönt, így nem kockáztatják meg a dupla büntetést!

b): A rabok tippelnek, de csak akkor, ha 50 %-nál nagyobb ez esélye, hogy a tipp bejön. Itt a rabok a sorszámuk sorrendjében szólalhatnak meg. A rosszul tippelő rab visszamegy a cellájába, a másik kettő (a tippelés eredményét ismerve) tovább játszik.

(Az első rab nem látja a másik kettőt. A középső látja az első sapkáját. A hátsó látja mindkét előtte álló sapkáját. (A saját sapkáját egyik sem látja!)).

Előzmény: [127] Hajba Károly, 2003-12-02 01:19:59
[127] Hajba Károly2003-12-02 01:19:59

Kedves Gyuri!

Ez egy igazi érdekes matekfeladat, gratula! Legyen \Pi, aki a szorzatot látja, és \Sigma, aki az összeget látja. S úgy tűnik, a végeredmény attól függ, ki kezdte a párbeszédet, mivel erről nincs infónk.

1)

\Pi: [Többféleképpen tudom a számot szorzattá bontani,] nem tudom.

\Sigma: [Mivel nem tudja, \Pi\ne 1 v. prím; többféleképpen tudom a számot összeggé bontani,] nem tudom.

\Pi: [Mivel nem tudja, \Sigma\ne 2, 3, 4; még mindig többféleképpen tudom a számot szorzattá bontani,] nem tudom.

\Sigma: [Mivel nem tudja, továbbá \Pi\ne 4; még mindig többféleképpen tudom a számot összeggé bontani,] nem tudom.

\Pi: [Mivel nem tudja, továbbá \Sigma\ne 5; s mivel \Pi=6 egyik tagjához tartozó összeget kizártuk,] tudom.

\Sigma: [Mivel tudja, \Pi=6, s mivel \Sigma=7,] tudom.

A=1, B=6

2)

\Sigma: [Többféleképpen tudom a számot összeggé bontani,] nem tudom.

\Pi: [Mivel nem tudja, \Sigma\ne 2, 3; többféleképpen tudom a számot szorzattá bontani,] nem tudom.

\Sigma: [Mivel nem tudja, \Pi\ne 1 v. prím; még mindig többféleképpen tudom a számot összeggé bontani,] nem tudom.

\Pi: [Mivel nem tudja, továbbá \Sigma\ne 4; még mindig többféleképpen tudom a számot szorzattá bontani,] nem tudom.

\Sigma: [Mivel nem tudja, \Pi\ne 4, s mivel \Sigma=5 egyik tagjához tartozó összeget kizártuk,] tudom.

\Pi: [Mivel tudja, továbbá \Sigma=5; s mivel \Pi=6 egyik tagjához tartozó összeget kizártuk,] tudom.

A=2, B=3

Remélem, minden esetet figyelembe vettem, mivel nagyon leizzadtam. :o)

HK

Előzmény: [123] Gyuri, 2003-12-01 14:32:15
[126] lorantfy2003-12-01 18:23:54

Kedves Gyuri és Attila!

Igazatok van!

Ez megjegyzés nem volt átgondolt. Bocs!

Előzmény: [122] Gyuri, 2003-12-01 14:12:49
[125] jenei.attila2003-12-01 16:59:22

Kedves László!

Csatlakozok Gyuri megjegyzéséhez, hozzátéve, hogy az egyenletrendszer szimmetriáját nyilván úgy értetted, hogy adott gyökök mellett ezek bizonyos permutációi is megoldást adnak. A feladatban jól látszik, hogy összesen három (az identitást is belevéve) megfelelő permutáció létezik. Ez azonban nem jelenti azt, hogy a gyökök egyenlők.

Előzmény: [119] lorantfy, 2003-12-01 09:05:35
[124] Gyuri2003-12-01 16:52:49

28. feladat megoldasa

Tekintsuk a lenti abrat. Az AMB ill. az ACB \Delta-ek B-hez tartozo magassaga ill. alapegyenese kozos. Hasonloan szemlelve az AMD es ACD \Delta-eket:

\frac{T_{ACB}}{T_{AMB}}=\frac{AC}{AM}=\frac{T_{ACD}}{T_{AMD}}

Az AB=AD=a jelolessel:

T=T_{ACB}+T_{ACD}=\frac{AC}{AM}\cdot(T_{AMB}+T_{AMD})=\frac{AC}{AM}\cdot T_{ABD}=\frac{AC}{AM}\cdot \frac{a^2\sin\alpha}2

A 'gamma'-val jelolt szogek valoban egyenloek, hisz azonos hosszusagu hurokhoz tartozo keruleti szogek (megfelelo iven). Igy (az implikacio jele nem akar mukodni):

AMD_{\Delta}\sim ADC_{\Delta}\to \frac{AM}{AD}=\frac{AD}{AC}\to a^2=AM\cdot AC

Az a2-re kapott erteket a T-re levezetett kifejezesbe irva a bizanyitando egyenloseget kapjuk.

[123] Gyuri2003-12-01 14:32:15

Ha mar ugyis Erdekes matekfeladatok a topic, akkor talan megfelelo helyre irom le a kovetkezot.

30. feladat: Ket teljesen intelligens, es egymas eme tulajdonsagat ismero ember beszelgetnek. Egy harmadik szemely meg a tarsalgasuk elott elhelyezett ket cedulat a homlokukon. Mindket emberunk csak a masik fejen levo cedulat latja. A cedulak egyiken ket pozitiv egesz szam osszege, a masikan ugyanannak a ket szamnak a szorzata szerepel. Szerencsere annyit legalabb elarult nekik a harmadik szemely, hogy melyikuk fejen van az osszeg illetve a szorzat. Ezek utan a kovetkezokeppen tarsalognak.

-Nem tudom, mi a ket szam.

-Nem tudom, mi a ket szam.

-Nem tudom, mi a ket szam.

-Nem tudom, mi a ket szam.

-Mar tudom, mi a ket szam.

-Mar en is tudom, mi a ket szam.

Termeszetesen mas informacio nem jut el hozzajuk. Pl. nem allnak tukor elott, nem irjak le egymas szamait papirra, nem irnak emailt, stb.

Remelem mar mindenki tudja, mi a ket szam!

Udv: Gyuri

[122] Gyuri2003-12-01 14:12:49

Kedves Laszlo!

Ismet akadekoskodnek a 25. feladatra tett megjegyzese kapcsan. Az egyenletrendszer szimmetriaja meg nem biztositek a megoldas szimmetriajara. Legyen

f(x)=\frac{1-x-2x^2}{1+x^2}

ekkor az

f(x)=y,f(y)=z,f(z)=x

egyenletrendszernek megoldasa a (0,1,-1) szamharmas. De megoldas az

x=y=z=\frac{kif}6-\frac{4}{3}\frac1{kif}-\frac23\approx0.3532\quad ahol\quad kif=\root3\of{188+12\cdot\sqrt{249}}

szamharmas is. Udv: Gyuri

Előzmény: [119] lorantfy, 2003-12-01 09:05:35
[121] Hajba Károly2003-12-01 11:35:26

A következő feladaton csak annyit lehet gondolkodni, mint amennyi időt Örkény egyperceseire fordítunk. Ha valaki tovább gondokozik rajta, csal, mint Rodolfó a bűvész.

29. feladat: A) Kik vannak többen? Nagymamáink dédapjai vagy Dédmamáink nagyapjai? B) Hányan vannak összesen?

HK

[120] nadorp2003-12-01 10:45:34

Kedves László !

Vázolok egy megoldást a 24.b feladatra.

Legyen X=AB…BC=10^{n+1}A+\frac{10^{n+1}-10}9B+C és

Y=CB…BA=10^{n+1}C+\frac{10^{n+1}-10}9B+A

A 7-tel való oszthatóságot elég a 9X és 9Y számokra nézni. Felhasználva még azt, hogy 10 hatványai ugyanazt a maradékot adják 7-tel osztva, mint 3 hatványai, kapjuk:

7 | 2.3n+1A+3(3n-1)B+2C és 7 | 2.3n+1C+3(3n-1)B+2A

3 hatványai rendre a következő maradékokat adják 7-tel osztva: 3,2,6,4,5,1. Ezt felhasználva három esetet különböztetünk meg.

1.eset: n=6k alakú

Ekkor 7 | 3n-1 és 3n+1 7-es maradéka 3, ezért 7 | 6A+2C és 7 | 6C+2A teljesül. De ekkor véve a két szám összegét és különbségét: 7 | 4(A-C) és 7 | 8(A+C), azaz 7 | A-C és 7 | A+C. Ez csak úgy lehet, ha A és C közül az egyik 0, amit kizártunk. Ekkor tehát nincs megoldás.

2.eset: n=6k+5 alakú

Ekkor 3n 7-es maradéka 5 és 3n+1 7-es maradéka 1, ezért 7 | 2A+5B+2C vagy másképpen 7 | 2A+5B+2C-7B=2(A-B+C). Ez teljesül,ha például A=8 B=2 C=1.

3.eset: n\ne6k és n\ne6k+5 alakú

Mivel 7 | 9X-9Y, ezért 7 | 2(3n+1-1)(A-C) . Ez most csak úgy lehet ha 7 | A-C, azaz A=9 C=2 vagy A=8 C=1 ( vagy ha felcseréljük A és C szerepét, de az most mindegy). Látszik, hogy A C és n ismeretében B egyértelműen meghatározható mod 7. A számolást nem részletezve az alábbi két táblázatot kapjuk:

n 1 2 3 4
A 9 9 9 9
C 2 2 2 2
B 5 0 1 2
n 1 2 3 4
A 8 8 8 8
C 1 1 1 1
B 6 0 4 1

Látszik, hogy n=6k+4 esetén B megegyik A-val vagy C-vel, ami nem lehet. A feladatnak tehát n=6k vagy n=6k+4 esetén nincs megoldása, máskor mindig van.

Előzmény: [110] lorantfy, 2003-11-29 00:33:28
[119] lorantfy2003-12-01 09:05:35

Kedves Gyuri!

Kösz a segítséget!

Ha nem tudunk a szám elejére 0-kat tenni, hát tegyünk a végére. Mig a TeX-el vacakoltam, elfelejtettem, hogy A tartalmazhat még páros kitevőjű prímtényezőket és ezzel "n" jegyűvé növelhető.

Mostmár mindegy. Lényeg az, hogy összejött a megoldás.

Ügyes a 25. feladatra adott megoldásod is. Én ott arra gondoltam, hogy mivel szimmetrikus az egyenletrendszer, a megoldás nyilván x=y=z=a. Így elegendő, ha megoldjuk a

 \frac {2x^2}{1+x^2}=x

egyenletet. Amiből x(x-1)2=0 és így x=y=z=0 vagy x=y=z=1.

Előzmény: [118] Gyuri, 2003-12-01 04:26:07
[118] Gyuri2003-12-01 04:26:07

Kedves Laszlo!

Bizonyara az ejszakazasnak tudhato be a tevesztese.

A 24.c feladathoz pont az 1. pelda szolgaltat egy megoldast:

A=(1011+1).11-2.102=82644628100.

Hasonloan megoldas meg: (1011+1).11-2.i2 a kovetkezokre: i=4,5,6,7,8,9

A teljes megoldast ilyen koran mar nincs erom leirni...

Udv: Gyuri

Előzmény: [117] lorantfy, 2003-12-01 00:24:24
[117] lorantfy2003-12-01 00:24:24

Kedves Nádor P.!

Jó példát adtál. Remélem jó lesz a megoldás is!

Megoldás a 24.c feladatra: Eredeti szövege: Keressünk olyan A pozitív egész számot, melyre igaz, hogy önmaga után leírva még egyszer (pld A=12264 esetén 1226412264) a kapott szám négyzetszám.

Az A-ból képezett „duplázott” szám: AA=k2. Legyen A „n” jegyű szám a 10-es számrendszerben, ekkor

AA=10nA+A=(10n+1)A=k2

A (10n+1)A minden prímtényezője páros (második) hatványon van és (10n+1)\geA.

Ebből az következik, hogy 10n+1-nek tartalmaznia kell legalább egy prímtényezőt második hatványon: p12, a többi páratlan (1) kitevőjű prímtényezőt pedig az A szám is tartalmazza, igy lesz a szorzat négyzetszám. Gondolnunk kell arra is, hogy A szám n jegyű.

Gyakorlatilag: \frac{10^n+1}{p_1^2}= A vagy 10n+1=p12A

Nézzük mi lehet ez a p1 prímtényező: 2 és 5 nyilván nem lehet, 3 és 9 nem lehet, mert a számjegyek összege 2.

Lehet 7 és 11. Többet nem is keresünk, ugyanis már ezek is túl nagyok.

Hiszen 10n+1-et 49-el vagy 121-el osztva, az A szám csak (n-1) illetve (n-2) jegyű lesz. Ami azt jelenti, hogy egy vagy két 0-t kéne elé írni, hogy „duplázáskor” a négyzetszám létrejöjjön. Ezt a feladat szövege nem engedi meg.

Így NINCS ilyen A szám!

Érthetőbbé válik a dolog, ha megnézünk egy-két példát, amikor a 0 számjegy segítségével teljesül a feltétel.

1.példa:

1011+1=112  23  4093  8779  \implies  A=23  4093  8779  

Szorzatuk:

  112  232  40932  87792

négyzetszám. A=826446281 - 9 jegyű szám, igy a szorzat: 82644628100826446281 – négyzetszám.

2.példa:

1021+1=72  11  13  127  2689  459691  909091

A=11  13  127  2689  459691  909091

Szorzatuk:

72  112  132  1272  26892  4596912  9090912

A=20408163265306122449 – 20 jegyű szám, kell elé egy 0-számjegy:

A négyzetszám: 20408163265306122449020408163265306122449

Előzmény: [108] nadorp, 2003-11-28 12:24:24
[116] Gyuri2003-12-01 00:12:04

Kedves Zoli!

A 25. feladat megoldasa:

ha valamelyik valtozo 0, akkor a tobbi is az. tehat ha valamelyik nem 0, akkor a tobbi sem lehet az. ekkor nyilvan mindegyik pozitiv kell legyen. az egyenletek osszeszorzasabol:

2\cdot2\cdot2=(x+\frac1x)\cdot(y+\frac1y)\cdot(z+\frac1z)

de ez csak x=y=z=1 eseten lehet, hisz a>0 eseten a+\frac1a\ge2 es egyenloseg csak a=1 eseten all fenn.

igy pontosan ket megoldas van.

udv: Gyuri

Előzmény: [111] SchZol, 2003-11-29 21:44:23
[115] Hajba Károly2003-11-30 01:41:05

Kedves Attila!

Abban igazad van, hogy mind 20. mind a 21. feladat megoldása a \sqrt{2} szerkesztése, de a két feladat végeredménye más. Nevezhetjük édestestvéreknek is. Az alábbi ábra mutatja a különbséget és egyben a szerkesztés egyszerűségét is. Nem kell invertálni sem.

HK

Előzmény: [93] jenei.attila, 2003-11-19 13:00:17
[114] SchZol2003-11-29 22:07:26

28.feladat: (A verseny 4. feladata)

Az ABCD húrnégyszögben AB=AD és az A csúcsnál lévő belső szög \alpha. Bizonyítsa be, hogy ha a húrnégyszög terültetét T jelöli, akkor

T=\frac{AC^2\cdot\sin\alpha}2

[113] SchZol2003-11-29 21:55:34

27.feladat: (A verseny 3. feladata)

Az egész együtthatós ax2+bx+c=0 másodfokú egyenletnek két különböző gyöke van a (0;1) nyílt intervallumban. Bizonyítsa be, hogy akkor |a|\ge5

[112] SchZol2003-11-29 21:46:42

26.feladat (A verseny 2. feladata)

Legfeljebb hány részre oszthatja fel a síkot, a sík egy rögzített pontján áthaladó k darab kör és n darab egyenes, ha k és n pozitív egész szám? Határozza meg a részek maximális számát megadó R(k;n) függvényt!

[111] SchZol2003-11-29 21:44:23

November 28-án és 29-én került megrendezésre Zalaegerszegen az Izsák Imre Gyula komplex verseny. Íme a matematika példák a versenyről:

25.feladat: (A verseny 1. feladata)

Oldja meg az alábbi egyenletrendszert a valós számhármasok halmazán:

\frac{2x^2}{1+x^2}=y

\frac{2y^2}{1+y^2}=z

\frac{2z^2}{1+z^2}=x

[110] lorantfy2003-11-29 00:33:28

Kedves Nádor P. és Károly!

Köszönet a megoldásokért! Természetesen A=0, C=0 nem megengedett, mint az az ilyen feladatoknál lenni szokott. Gyakorlatilag megvan a megoldás - persze nem ártana ha valaki szépen összefoglalná. Külön köszönet a 24.c-ért. Én úgy gondoltam a további általánosítást, hogy a "tengelyesen szimmetrikus" számok 7-tel való oszthatóságát kellene vizsgálni, csak még nem volt időm rá.

Előzmény: [108] nadorp, 2003-11-28 12:24:24
[109] Hajba Károly2003-11-28 13:14:36

Kedves László!

A 24/a feladattal foglalkoztam egy kicsit, s mivel találtam rá példát, így a válasz: lehetséges (pl.: 168 - 861). Ha ragaszkodunk a háromjegyű számhoz, akkor |A-C|=7, tehát a számokpárok 1 és 8-cal ill. 2 és 9-cel kezdődhetnek.

(1) ABC -> 100*A+10*B+C=7*N

(2) CBA -> 100*C+10*B-C=7*M

(2)-(1) 99*(A-C)=7*(M-N)

Mivel 99 nem osztható 7-tel, továbbá M-N oszthatósága jelen esetben közömbös, így A-C mindenképpen osztható 7-tel. Ebből az is következik, hogy M-N osztható 99-cel.

Más a helyzet a 24/b feladattal. Ha a fenti levezetést minden n-re elvégezzük, találunk 7-tel osztható első számot pl.: 9009. Ekkor egyéb vizsgálatok is szükségesek, de most nincs időm rá.

HK

Ui.: A CBA egyes kis- és középboltok egyfajta országos tömörülése, felénk is van(/volt?).

Előzmény: [107] lorantfy, 2003-11-28 00:45:42
[108] nadorp2003-11-28 12:24:24

Kedves László !

Gondolom, a 24.b feladatban a kérdést úgy értetted, hogy bármely n-re léteznek-e megfelelő A,B,C számjegyek. Én arra jutottam, hogy ha megengeded az A=0 vagy C=0 eseteket, akkor csak n=6k+4 esetén nincs megoldás, ha nem, akkor n=6k és n=6k+4 esetén nincsenek megfelelő számok. A megoldás leírásával még várnék. Viszont csatlakoznék egy hasonló feladattal:

24.c feladat: Keressünk olyan A pozitív egész számot, melyre igaz, hogy önmaga után leírva még egyszer (pld A=12264 esetén 1226412264) a kapott szám négyzetszám.

Előzmény: [107] lorantfy, 2003-11-28 00:45:42
[107] lorantfy2003-11-28 00:45:42

24.a feladat: Legyenek ABC és CBA tizes számrendszerbeli számok, ahol A,B,C különböző számjegyeket jelölnek. Lehetséges-e, hogy mindkét szám osztható 7-tel?

24.b feladat: Legyenek ABB...BBC és CBB...BBA tizes számrendszerbeli számok, ahol "A" és "C" számjegyek között n darab "B" számjegy áll és A,B,C különböző számjegyeket jelölnek. Lehetséges-e, hogy bármely n-re mindkét szám osztható 7-tel?

Megjegyzés1: Sajnos felülvonást nem tudok húzni, ha valaki tud, kérem írja be a TeX témába!

Megjegyzés2: Mifelénk az ABC áruházakból CBA-k lesznek. Erről jutott eszembe ez a feladat.:-)

[106] Lóczi Lajos2003-11-25 19:14:24

Kedves Oroszgy,

Attila olyan kérdésre válaszolt (lásd lejjebb), ahol csak körző használata megengedett, tehát az "átló behúzása" nem, lévén, hogy nincs vonalzónk.

Előzmény: [105] oroszgy, 2003-11-25 15:09:39
[105] oroszgy2003-11-25 15:09:39

Kedves Jenei Attila!

gyök2(TeX még folyamatban...) hosszúságú szakaszt lehet kapni ha egy 1 egység oldalú négyzetnek behúzzuk az átlóját.

[104] lorantfy2003-11-24 12:00:57

Kedves Károly!

Köszönet a kimerítő megoldásért! Szépen rámutattál miért nem lehet 45 fokkal forgatni - minthogy a sarkokban csak páros számok állhatnak. (Én a tükrözésről megfeledkeztem.)

Előzmény: [103] Hajba Károly, 2003-11-24 10:08:25
[103] Hajba Károly2003-11-24 10:08:25

Megoldás a 23. feladatra:

Legyen (S) a négyzetbe írandó számok összege és (K) az egy sor-oszlop-átló összege. Végezzük el a következő műveletet:

A két átló kétszereséhez adjuk hozzá a középső oszlop és sort és vonjuk ki belőle a szélső oszlopokat és sorokat. Így egyrészről a középső elem 6-szorosát, mésrészről 2*K-t kaptunk. Tehát a középső elem \frac K3 ill. \frac S9 -cel egyenlő.

A mi esetünkben a középső szám 5 és K=15. Mivel mindkét szám páratlan, így az egy sor-oszlop-átlóba írandó másik két szám vagy mindkettő páros vagy mindkettő páratlan. Továbbá az oszlopok és sorok szélső elemeinek összege páratlan, ez vagy 3 páratlan, vagy 2 páros és 1 páratlan szám összege. Ebből következik, hogy a 4 páros szám csak a sarkokba kerülhet.

A bűvös négyzetnél a nem egy sor-oszlop-átlóba írt 3 szám, mely egyéb keretfeltételeknek is megfelel, egyértelműen meghatározza a többi számot. Így a négy sarokszámot kétféle irányultsággal tudom beírni, hogy ne lehessen egymásba forgatni. Ha a tükrözéssel kialakult állapotot is azonosnak tekintjük, csak egy megoldás létezik. Tehát a megoldás az alábbi és a tükörképe:

4 9 2
3 5 7
8 1 6

Hajba Károly

Előzmény: [102] lorantfy, 2003-11-23 09:15:26
[102] lorantfy2003-11-23 09:15:26

23.a) feladat Írd be az 1,2,3,4,5,6,7,8,9 számokat egy 3x3 bűvös négyzetbe!

(Úgy, hogy a sorok, oszlopok és átlók összege is azonos legyen.)

.... . .
. .... .
. . ....

23.b) feladat Hányféle beírás lehetséges, ha az egymásba forgathatókat nem tekintjük különbözőnek?

(Elemi forgatás (45 fok): amikor a főátló (....) oszlopba, a másik sorba megy át.)

[101] Hajba Károly2003-11-21 13:46:46

Kedves Lajos!

A pozitív egész számok tartományában értelmeztem és a 2. sor első számának 1-gyel kell kezdődnie és legalább 2 jegyű. Továbbá mind a 8 összeg egyenlő.

László pontosítása után természetesen csak egy létezik. A középső száma: 107, összege: 321

Hajba Károly

Előzmény: [99] Lóczi Lajos, 2003-11-21 11:06:19
[100] lorantfy2003-11-21 11:28:15

Kedves Lajos és Károly!

Elnézést, de elfelejtettem írni a BŰVÖS NÉGYZET-hez, hogy a pontok csak helykitöltő szerepet játszanak, különben összeesik a TeX tábla. Szóval gondom volt az üres rekeszekkel és így tudtam gyorsan megoldani. A beírt számok: 1, 19, 98. (Az 1 számjegy mellett szintén csak "helynövelő" a pont.)

Előzmény: [99] Lóczi Lajos, 2003-11-21 11:06:19
[99] Lóczi Lajos2003-11-21 11:06:19

Kedves Onogur!

Attól függ, hogyan értjük a kérdést.

Pontosan milyen feltételekkel kaptál kilenc megoldást? Gondolom, a négyzet sor- és oszlopösszegei ugyanaz a szám, de a fő- és mellékátlók összege is ez? A pontok egy számjegyet jelölnek? Negatív értékek megengedettek?

Előzmény: [98] Hajba Károly, 2003-11-21 10:21:01
[98] Hajba Károly2003-11-21 10:21:01

Kedves László!

9 megoldás létezik rá, de hagyok mást is gondolkodni.

HK

Előzmény: [95] lorantfy, 2003-11-19 22:39:21
[97] SchZol2003-11-20 16:23:38

Kedves Suhanc!

Igen a nehezítésben meghagytam a feltételt, és van rá megoldásom! Egyébként, ha benézel a Biliárdgolyók és más méricskélős feladatok című téma alá, ott megtalálod Lorantfy megoldását.

Üdv, Zoli

Előzmény: [96] Suhanc, 2003-11-20 14:54:09
[96] Suhanc2003-11-20 14:54:09

Üdvözlet! Ha jól láttam, a 15. feladatra még senki nem írt megoldást. Van egy ötletem, de az megszegi azt a kikötést,ami még az 5. feladatban szerepelt, névszerint: minden ládában 1000 pénzérme van. Sch Zolitól kérdezném: a nehezítésben meghagytad ezt a feltételt? Ha igen, van megoldásod rá?

[95] lorantfy2003-11-19 22:39:21

Egy könnyed kis feladat. A 7. osztályos fiamnak volt valamelyik versenyen.

Töltsétek ki a bűvös négyzetet!

. 19 98
1 . . .
. . .
[94] jenei.attila2003-11-19 16:34:26

A \sqrt2 szerkesztésére egy egyszeű módszer: nyilvánvaló, hogy tetszőleges szakasznak könnyen tudjuk szerkeszteni egész számú többszörösét, \sqrt3-szorosát, és az inverz pont szerkesztésével egész hányadát. Tetszőleges r hosszúságú szakasz \sqrt{\frac{3}{2}}-szeresét a következőképpen szerkesztjük. O pontból r sugárral kört szerkesztünk, és O-tól r távolságra felvesszük az M pontot, valamint ugyanebben az irányban 2r-re felvesszük a P pontot. P középpontból 2r sugárral kört szerkesztünk, amely az előző kört Q pontban metszi. Könnyen kiszámolható, hogy QM=\sqrt{\frac{3}{2}}\cdot r. A megfelelő szerkesztésekkel \sqrt2=\sqrt3\cdot 2\cdot\sqrt{\frac{3}{2}}\cdot \frac{1}{3}.

[93] jenei.attila2003-11-19 13:00:17

Úgy gondolom, ez a feladat nem különbözik a négyzet szerkesztésétől, ugyanis mindkét esetben adott egység mellett a négyzetgyök(2) hosszúságú szakaszt kell megszerkeszteni csak körző segítségével. Bármelyik feladat megoldása megoldja a másikat is.

Előzmény: [92] Hajba Károly, 2003-11-19 00:54:04
[92] Hajba Károly2003-11-19 00:54:04

Nekem is van egy ehhez hasonló feladatom:

21. feladat: Adott egy kör, egyetlen körző segítségével negyedeljük el.

HK

Előzmény: [84] SchZol, 2003-11-17 17:14:16
[91] Kós Géza2003-11-18 22:50:54

A 18-szöges megoldást is nézzük meg, szerintem nagyon tanulságos.

A szabályos 18-szögnek két nagy előnye van. Az egyik, hogy az átlók és oldalak közötti szögek mindig a 10o többszörösei, ezért esélyünk van megtalálni a feladat ábráját az átlók között. A másik, hogy sok olyan pont van a belsejében, ahol nagyon sok átló megy át. Az ábrán az E egy ilyen pont.

Legyen E először csak az AM átmérő és DJ metszéspontja. A DJ tükörképe az AM egyenesre KG, tehát KG is átmegy E-n. A KG egy nagyon speciális átló, a hozzá tartozó középponti szög éppen 120o. Ebből következik, hogy az O és F pontok egymás tükörképei a KG átlóra. Az OM egyenes tükörképe a KG átlóra éppen FB, mert O tükörképe F, és az irányok is stimmelnek. Tehát FB is átmegy E-n. Végül HL az FB tükörképe az AM átmérőre, tehát ez is átmegy E-n.

Előzmény: [63] Kós Géza, 2003-11-13 14:25:51
[90] lorantfy2003-11-18 20:45:43

Kedves Péter Pál!

Gratulálok! Jó a megoldás. Annyi vari lehet, hogy az első menetben egy kannibál és egy fehérember megy át és a fehérember hozza vissza a csónakot. Én már előre megcsináltam táblázatban, hogy gyakoroljam a TeX táblát:

3K 3F
2K 2F F,K >
2K 2F < F K
3F K,K > K
3F < K 2K
K F F,F > 2K
K F < K,F K F
2K F,F> K F
2K < K 3F
K K,K > 3F
K < K K 3F
K,K > K 3F
3K 3F
Előzmény: [89] Pach Péter Pál, 2003-11-17 21:37:15
[89] Pach Péter Pál2003-11-17 21:37:15

Megoldást írok a 18. feladatra:

1. lépés: Átmegy két kannibál, egyikük a túlparton marad, másikuk visszahozza a csónakot.

2. lépés: Ugyanez még egyszer.

3. lépés: Átmegy két fehérember, egyikük ott marad, másikuk viszont egy kannibál társaságában visszatér.

4. lépés: Átkel a még hátralévő két fehérember, a túlparti kannibál visszaviszi a csónakot.

5-6. lépés: Most már csak az van hátra, hogy a kannibálok is átkeljenek. Először átkelnek ketten, majd egyikük visszmegy a harmadikért.

Könnyen végiggondolhatjuk, hogy a kannibálok az átkelés során sosem kerültek többségbe. Ez azt jelenti, hogy mindannyiukat sikerült – épségben – átjuttatnunk a túlpartra.

Előzmény: [79] lorantfy, 2003-11-16 17:50:10
[88] Pach Péter Pál2003-11-17 21:34:00

Trükkös a megoldásod, BrickTop. Egyébként nem szükséges, hogy a két ponton átmenő egyenes is adott legyen. Leírok egy megoldást, ami csak a két pont (és természetesen a körző megfelelő használatának) ismeretét feltételezi

A 20. feladat II. megoldása következik: Könnyen bizonyítható, hogy körző segítségével (vonalzó nélkül) tudunk invertálni egy pontot egy olyan körre, aminek a középpontját is ismerjük. (Ezt először külső pontra érdemes belátni.) Aki nem ismeri, gondolkozzon el rajta.

A két pont, amihez négyzetet akarunk rajzolni, legyen A és B!(A keresett négyzet ABCD.) AB-hez háromszögrácsot rajzolva megkapjuk A tükörképét B-re: E-t. Most E-t invertáljuk az A középpontú, AB sugarú körre, a képe az AB szakasz felezőpontja, O lesz. Az O középpontú, \frac{AB}{2} sugarú kör legyen k. C-t megkaphatjuk a B középpontú, AB sugarú kör, és a B-ben AB egyenesére állított merőleges egyenes (egyik) metszéspontjként. Ha ezt a két alakzatot invertáljuk k-ra, akkor az egyenesből is kör lesz, és így már meg tudjuk szerkeszteni metszéspontjukat. A körünk képe az AE’ átmérőjű kör, ahol E’ az E pont képe, ugyanis O illeszkedik AE-re. (Ezt a kört meg tudjuk rajzolni, hiszen felezőpontját megszerkeszthetjük ugyanúgy, ahogy AB felezőpontját megszerkesztettük. Az egyenesünk képe a BO átmérőjű kör.

A két kapott kör metszéspontjai közül az egyik C’, vagyis C képe. Ha C’-t invertáljuk k-ra, akkor megkapjuk a keresett C pontot. Természetesen D ugyanígy kapható meg.

A 20. feladat speciális esete a Mohr-Mascheroni-tételnek, ami a következő állítást bizonyítja: „Minden körzővel és vonalzóval elvégezhető szerkesztés elvégezhető csak körző segítségével is.” Erről, és még számos híres matematikai problémáról olvashatunk Heinrich Dörrie: A diadalmas matematika c. könyvében. (Szóval ez most egyben könyvajánlás is!) A könyvet egyébként az egyik matektanárunk, Hraskó András ajánlotta.

Előzmény: [87] BrickTop, 2003-11-17 20:48:41
[87] BrickTop2003-11-17 20:48:41

20. feladat, megoldás: Adott A és B pont.

1) A-ból és B-ből körívezünk AB-vel --> C metszéspont.

2) A-ból és C-ből körívezünk AB-vel --> D metszéspont.

3) A-ból és D-ből körívezünk AB-vel --> E metszéspont.

4) E-ből körívezünk BD-vel --> F metszéspont az AB szakaszon.

5) B-ből körívezünk BE-vel, D-ből körívezünk FB-vel --> G a két körív metszéspontja (a két körív valójában érinti egymást).

6) F-ből körívezünk EG-vel --> a keletkezett körív és a B középpontú, AB sugarú körív (ld. 1)) metszéspontja a négyzet harmadik pontja, H.

7) H-ből körívezünk AB-vel :) --> a keletkezett körív és az A középpontú, AB sugarú körív (ld. 1)) metszéspontja a négyzet negyedik pontja.

Kicsit több, mint egy éve jöttem rá erre a megoldásra. Most megprobáltam szerkesztéssel ellenőrizni, nem nagyon jött ki, de biztos azért, mert bénán szerkesztek. Elméletileg szerintem jó. Bizonyítást nem írtam, mert ha megvan az ábra, már nagyon egyszerű belátni, hogy a négyzet pontjait kapjuk. Ábrát nem készítettem, mert lusta voltam (órákig tartana egy ilyen ábrát megcsinálni az én programarzenálommal), és mert az ábra lelövi a poént. Így aki meg akarja oldani a feladatot, egyszerűen nem olvassa el a szerkesztés menetét.

Remélem nem néztem el semmit és nem vesztegettem el negyed órát egy hibás szerkesztés leírásával :)

Előzmény: [86] SchZol, 2003-11-17 20:07:20
[86] SchZol2003-11-17 20:07:20

Kedves Bricktop!

Igazad van adott még a két ponton átmenő egyenes is. Bocsi.

Előzmény: [85] BrickTop, 2003-11-17 18:32:42
[85] BrickTop2003-11-17 18:32:42

A 20. feladatban a 2 pont nincs véletlenül összekötve? Mert nekem van megoldásom, de csak ha egy szakasz van megadva (tehát 2 pont ami össze van kötve).

Előzmény: [84] SchZol, 2003-11-17 17:14:16
[84] SchZol2003-11-17 17:14:16

PQ azért merőleges AB-re, mert PAQ háromszögben QC és PD magasságvonal, tehát B a PAQ háromszög magasságpontja, ebből következik, hogy AB egyenes is magassága a PAQ háromszögnek, tehát merőleges AB PQ-ra.

20.feladat: Adott két pont. Egyetlen körző segítségével rajzoljunk négyzetet, melynek e két pont két szomszédos csúcsa.

Előzmény: [83] lorantfy, 2003-11-17 16:41:14
[83] lorantfy2003-11-17 16:41:14

Mivel csak vonalzót használhatunk mást nem is tehetünk csak összekötünk két pontot. PA majd PB. Ezek metszik a kört C és D pontokban. Ezután CB, AD ezek metszik egymást Q-ban.

Bizonyítandó: PQ egyenes merőleges AB-re!

Előzmény: [82] jenei.attila, 2003-11-17 15:32:04
[82] jenei.attila2003-11-17 15:32:04

Kedves László!

Köszönöm a szép ábrát, kicsit reméltem is, hogy lesz türelmed megrajzolni. Maradva a geometriánál, egy nem túl nehéz de érdekes feladat: adva van egy kör, a középpontján átmenő egyenes, és egy pont a körön és egyenesen kívül. Egy egyenes vonalzó használatával szerkesszünk a ponton átmenő, egyenesre merőleges egyenest.

Előzmény: [81] lorantfy, 2003-11-17 15:15:00
[81] lorantfy2003-11-17 15:15:00

Kedves Attila!

Szép a megoldás! Remélem nem haragszol ha teszek fölé egy ábrát!

Előzmény: [79] lorantfy, 2003-11-16 17:50:10
[80] jenei.attila2003-11-17 13:18:39

Utoljára az általam feladott háromszöges feladatról. Csillag megoldása ABD szög=50 fok esetére ismét nagyon ötletes és egyszerű. Én jóval körülményesebben oldottam meg, mégis leírom, mert megoldja az ABD=70 fok esetet is. Tehát: Szerkesszünk a BC oldalra kifelé szabályos háromszöget, amelynek harmadik csúcsa legyen K. A D´ pontot AC-n vegyük fel úgy, hogy CKD´ szög=20 fok legyen. Megmutatjuk, hogy ekkor D és D´ egybeesik. Valóban, mivel D´CK szög=80 fok és CKD´=20 fok, ezért CD´K=80 fok és KC=KD´=KB. A D´KB szög=40 fok, ezért (és KD´=KB miatt) KBD´ szög=70 fok. De KBD szög is =70 fok, ezért D´=D. Megállapítottuk tehát, hogy a CDK háromszög egybevágó az ABC háromszöggel, ezért CD=AB. De GD=GC-CD=GB-CD=GB-AB=GB-FB=GF, és GF=GE miatt GD=GE, amiből GDE=50 fok, és EDB=20 fok.

Az ABD=50 fok esete: D helyett L-lel jelöljük a szóbanforgó pontot, és D maradjon meg az előzőek szerint, tehét ABL szög =50 fok és EDA szög=50 fok. Szintén DC=AB=AL miatt AEL és CED háromszögek egybevágók, ezért EL=ED, de LDE szög =50 fok (D-t most így vettük vel, nem az előző feladatból jött, bár egybeesik vele), DLE szög is = 50 fok, amiből ELB szög =80 fok.

Bocs a hosszú hozzászólásért, legközelebb rövidebb leszek.

[79] lorantfy2003-11-16 17:50:10

Kedves Fórumosok!

Biztos ismeritek azt a feladatot, hogy vigyük át a farkast a nyulat és a káposztát a folyón, ha a csónakunkban csak egy hely van és a farkas megeszi a nyulat, a nyúl meg a káposztát ha egyedül hagyjuk őket. Ha nem, olvassátok el a Szegény ember káposztája c. Gárdonyi mesét:

http://www.brody.iif.hu/hmek/gardonyi/tihanyi/kaposzta.htm

Ennek egy variációja a következő: 18. feladat:

A folyó egyik partján áll 3 kannibál és 3 fehérember. Egy kétszemélyes csónakjuk van és úgy kell átkelniük a folyón, hogy egyik parton sem lehetnek többségben a kannibálok, mert akkor megeszik a fehérembereket. A csónakban ülő partotérő emberek már partonlévőnek számítanak.

[78] Csillag2003-11-14 22:27:12

Üdv Mindenkinek!

Azt hiszem jobb lenne, ha ettől a témakörtől elválasztanánk a "divatosabb" témákat: pl. Rubik-kocka, billiárdgolyók,...

Más: a (66)-os hozzászólásomban: nem paralelogramma, hanem deltoid a DFEG négyszög:)

GB

[77] toto2003-11-14 18:38:51

http://www.superliminal.com/cube/cube.htm

Itt lehet találni egy virtuális, négydimenziós 3x3x3x3-as kockát. Nem volt időm megnézni, de lehet olyan érdekes, mint egy 4x4x4 es

Előzmény: [71] SchZol, 2003-11-14 05:48:40
[76] Bubu2003-11-14 17:32:18

Üdvözletem! Csatlakoznék a kockás cikk kérőihez. Másrészt elmélkedtem a saját problémámon (a 2 hibás golyó esete), az mindenesetre biztosnak tűnik, hogy teljes általánosságban nem megoldható. Úgyhogy a feladat része lett az is, hogy találjuk ki a feladatot:) Egyébként nagyon tetszik a fórum, kár hogy egyelőre kevesen vagyunk. Remélem hamar híre megy, és akkor akár komolyabb problémák is szóba jöhetnek - mint anno a levélváltások...:))

Bubu

[75] Hajba Károly2003-11-14 13:12:31

Kedves László!

A geodéták, mikor a tervezési alaptérképhez a térképet digitalizálják a meglévő kézzel, tustollal rajzolt állapotról, egyszerűen csak azt mondják: 'bedigizem neked a térképet'. Nem azt mondom, hogy szép, de mindenképpen rövid és már egyes helyeken használják.

Károly

Előzmény: [73] lorantfy, 2003-11-14 12:56:58
[74] Hajba Károly2003-11-14 13:01:02

Visszatérek a biliárdgolyós feladathoz, mivel úgy tűnik számomra, még sok érdekes dolgot lehet kihozni belőle.

- [39] hozzászólásbeli Gáti Baetrix Zoltán által közzétett táblázata a nehezebb változatnak éppen nem felel meg, de ha a 3. mérésben a 8-as golyót a 12-esre cseréljük, már tökéletes.

- [52]-beli Bubu hozzászólásában a több eltérő golyó felé általánosít. Bennem pedig már korábban felmerült egy másik általánosítási lehetőség, miszerint valamely golyó(k)ról állítjuk, hogy nem tér el és ez alapján, hogy változik a mérhető golyók száma. Továbbá mi a helyzet a kevesebb ill. több mérési számok esetén.

16. feladat: Ha n a mérések száma, mennyi a legnagyobb g(n) golyók száma, mely esetén még meghatározható a hibás golyó és annak eltérése is?

17. feladat: Ha 2-szer mérhetünk, hány biztosan nem hibás golyót kell ismernünk, hogy a lehető legtöbb ismeretlen golyó közül tudjuk kiválasztani az egyetlen hibás golyót és eltérését?

Hajba Károly

[73] lorantfy2003-11-14 12:56:58

Kedves Károly, Zoli és Kockarajongók!

Feltúrtam a fizika szertárt és megtaláltam a Fizikai Szemle 82/2-es számában a cikket. Jövő héten beszkennelem és recognitázom - szóval nyomtatott formából elektronikus formába alakítom. (Jó lenne erre egy egyszerű szó - a digitalizálni talán nem a legszerencsésebb - ha tudtok jobbat írjátok meg!) Az érdeklődőknek tudom küldeni.

Előzmény: [72] Hajba Károly, 2003-11-14 08:40:05
[72] Hajba Károly2003-11-14 08:40:05

Kedves Zoli!

Isten hozott a kockabűvöltek táborába!

Beszkennelem a cikket, de feltételezem, hogy a Fizikai Szemlebeli cikk részletesebb lehet. Ti. késöbb jelent meg és többen jegyezték.

> Ti láttatok már 4*4*4 Rubik-kockát?

Anno volt a kezemben egy, talán kölcsön is kaptam egy hétre, de lehet, hogy az a dodekaéder volt. Ki tudja, ezirányú emlékeimet belepte már a rozsda. Tény, hogy nem bírtam vele :o(

Üdv: Károly

Előzmény: [71] SchZol, 2003-11-14 05:48:40
[71] SchZol2003-11-14 05:48:40

Kedves Károly!

Engem érdekelne a Rubik-kockás cikk, ha beszkenneled. Nagyon szeretem a Rubik-kockát, hetente egy párszor mindig kirakom. Ti láttatok már 4*4*4 Rubik-kockát? Sajnos Én még nem láttam, csak hallottam róla.

Üdv, Zoli

[70] Hajba Károly2003-11-13 23:50:18

Kedves László!

Nem azt a cikket ismerem, hanem a könyvbelit (A bűvös kocka - Gondolat - 1981), amit még csak Marx jegyzett (no nem a Tőkés :o).

A 'spin' pedig, hát... anno szerettem a fizika ezen részét is.

Ha érdekel a könyvbeli cikk, megpróbálhatom beszkennelni és drótpostán elküldeni.

Üdv: Hajba Károly

Előzmény: [68] lorantfy, 2003-11-13 23:16:47
[69] lorantfy2003-11-13 23:22:51

Az 5. feladatra: még nem írtunk megoldást. Az eredeti szöveg: Adott 100 láda mindegyikben 1000 db 2 grammos 1 forintos, kivéve egyet amiben 1 grammosak az 1 forintosok. Legkevesebb hány mérésből tudjuk eldönteni melyik ládában vannak a selejtes egy forintosok, ha minden láda ugyanúgy néz ki, és csak egy egykarú mérlegünk van.

Aki nem ismeri annak érdemes átgondolni a trükköt: Sorszámozzuk meg a ládákat 1-100-ig és minden ládából tegyünk fel a mérlegre annyi forintost amennyi a láda sorszáma. Ezt mérjük le. Ha minden ládában 2 grammos érmék lennének akkor (1+100)x100 = 10100 grammot kellene mérnünk. Amennyivel kevesebbet mérünk annyi a keresett láda sorszáma.Tehát egy mérés elegendő.

Az eredeti kitűző – Sch Zoli – nehezítése:

15. feladat: Hány mérés szükséges, ha a 100 közül két ládában vannak 1 grammos forintok.

Előzmény: [6] SchZol, 2003-11-01 22:12:06
[68] lorantfy2003-11-13 23:16:47

Kedves Lajos!

Örülök, hogy feltetted a megoldást. Úgy néz ki a „fiatalok” tényleg nem harapnak erre a témára. A „spin” szóhasználatból arra következtetek, hogy talán Te is olvastad a Fizikai Szemlében megjelent cikket (21 éve) Ha esetleg valakinek meglenne elektronikus formában köszönettel venném:

MARX GY., GAJZÁGÓ É., GNÄDIG P., ZÁMBÓ V.: A bűvös kocka univerzuma - Fizikai Szemle 32 (1982) 73-77

Előzmény: [59] Hajba Károly, 2003-11-13 00:09:23
[67] Lóczi Lajos2003-11-13 21:51:19

Mi sem egyszerűbb: helyettesítve a képletbe \alpha=80o, \beta=60o, \gamma=50o -- ha nem tévedek, ezekre gondoltál --, majd algebrai egyszerűsítések után a keresett \varphi szögre 80o adódik.

Előzmény: [64] jenei.attila, 2003-11-13 17:28:42
[66] Csillag2003-11-13 20:15:54

Szia Attila!

A 18 szöges megoldás végigolvasásához nem volt türelmem, de remélem a köv. megoldás független tőle: (AB és DE metszéspontja P)

ABD\angle=50\impliesADB\angle=50

AB=AD=AF\impliesADF\angle=80\impliesGDF\angle=100,DFG\angle=40\impliesDG=DF

DFEG paralelogramma szimmetriatengelye DE, így EPB\angle=30 és EDB\angle=80 GB

Előzmény: [64] jenei.attila, 2003-11-13 17:28:42
[65] Lóczi Lajos2003-11-13 18:57:33

Álljon itt a háromszöges feladat egy általánosítása: az alapon fekvő szögek a 80o helyett legyenek \alpha, a 60o-os BAE szög helyett legyen \beta, a 70o-os ABD szög pedig legyen most \gamma; ezekről tehát azt tesszük fel csak, hogy 0<\alpha<90o, 0<\beta<\alpha, 0<\gamma<\alpha. Jelölje továbbá a keresett BDE szöget \varphi. A rövidség kedvéért egy x szög tangensét jelölje \taux.

Ekkor elemi koordinátageometriai érvelés mutatja, hogy


\cos\varphi=\frac{1-m\cdot \tau_\gamma}{\sqrt{(m^2+1)(\tau^2_\gamma+1)}},

ahol m=\frac{\tau^2_\alpha\cdot(\tau_\beta-\tau_\gamma)}{\tau^2_\alpha-\tau_\beta\cdot\tau_\gamma}.

Az \alpha=80o, \beta=60o, \gamma=70o értékeket behelyettesítve, "némi" algebrai egyszerűsítés után például az alábbi alakot kapjuk (ki-ki maga is megpróbálkozhat eljutni idáig):


\cos\varphi=\frac{1-\cos 80^\circ}{\sqrt{3-2\sqrt{3} \cos 50^\circ}}.

13. feladat. Bizonyítsuk be, hogy a fenti kifejezés jobb oldala cos 20o.

Előzmény: [63] Kós Géza, 2003-11-13 14:25:51
[64] jenei.attila2003-11-13 17:28:42

Ötletes a hivatkozott KÖMAL-ban közölt 18 szöges megoldás, bár abban a feladatban az ABD szög 50 fok. Valószínűleg a módszer alkalmazható akkor is, mikor ABD szög=70 fok. Kiváncsi lennék a 18 szöges megoldástól független megoldásra ABD=50 fok esetén.

Előzmény: [63] Kós Géza, 2003-11-13 14:25:51
[63] Kós Géza2003-11-13 14:25:51

Aki szeretne kicsit mélyebben a feladat mögé nézni, annak ajánlom Csirmaz László Egy geometriai feladatról című cikkét. (KöMaL 1985/4, 147-149. oldal)

Előzmény: [62] lorantfy, 2003-11-13 13:51:17
[62] lorantfy2003-11-13 13:51:17

Kedves Csillag és Attila!

Szép a megoldás! Egy ábrát megérdemel.

[61] jenei.attila2003-11-13 10:34:03

Szia Csillag!

Szép megoldás, gratulálok. Egy két apróbb megjegyzést tennék. Amikor felírtad, hogy GD=GF=GE, innen már azonnal következik, hogy GDE szög = GED szög = 50 fok, de ADB szög = 30 fok, amiből EDB szög = 20 fok. Csak egy kis egyszerűsítés. Az én megoldásom is hasonló, megtartva a Te jelöléseidet, a következő: DC/GD=CB/CE=AB/GE. A GE félegyenesen vegyük fel H pontot úgy, hogy GH=GC legyen. Ekkor EH=GH-GE=GB-GF=FB=AB. Vagyis DC/GD=AB/GE=EH/GE miatt CH párhuzamos DE-vel. De GCH szög=GHC szög= 50 fok (mivel GC=GH) =GDE szög. EDB szög=GDE szög -ADB szög= 50-30=20 fok. A TeX-hel még nem tudok rendesen bánni, legközelebb azért megpróbálom.

Előzmény: [57] Csillag, 2003-11-12 22:20:02
[60] Hajba Károly2003-11-13 00:31:47

Ha (46) Jenei Attila geometriai feladata a 10. és (52) Bubu kérdése a 11. akkor

12. feladat: Kössük össze 12 darab, folytonos, a kiinduló pontba visszazáródó és a külső pontsoron túl nem nyúló egyenes szakasszal (azaz egy 12 szakaszból álló hurokkal) az alábbi 49 pontot.

HK

[59] Hajba Károly2003-11-13 00:09:23

Kedves László!

Úgy tűnik nekem, hogy csak ketten vagyunk jelen abból a generációból, kiket elbűvölt a bűvös kocka, habár jelenleg is kapható. Ezért is ill., hogy Mihály kérésére csökkenjen a megoldatlan feladatok száma, válaszolok a bűvös kockás feladatra.

Megoldás a 9. feladatra:

Az eredeti kockán található oldaléleknek két állásuk lehetséges, alaphelyzet ill. (180°-os) elforgatottság. Nevezzük 0 ill. 1/2 spinnek. Egy rendesen összeállított kocka spinjei mindig egész számot adnak ki, tehát első ránézésre a bűvös hasáb rendellenesen lett összeállítva, ami persze nem igaz, mivel alaphelyzetből és 0 spinnel lett összekeverve.

Ha jobban megnézzük az ábrát, látható, hogy a hasáb forma miatt 4 oldalél "le lett vágva", így azoknak csak egy színűk van, de ha 180°-kal elforgatom, önmagába tér vissza. Így e 4 elemnél a 0 és 1/2 spin teljesen egyformának tűnik. Ha az összekeverés előtt egy aszimetrikus jellel meg lettek volna jelölve, akkor 1 vagy 3 elem 1/2 spin elfordulást mutatna.

Hajba Károly

Előzmény: [43] lorantfy, 2003-11-08 15:50:59
[58] lorantfy2003-11-12 22:31:25

Kedves Lajos!

Nekem az 1 km helybenjárás kelet felé az nem tetszik, de miközben gondolatban ráhúztál a határesetre megálltál-e n-szer az 1/n sugarú köröknél és beidomítottad-e a medvét, hogy menjen körve n-szer kelet felé? Mert ha igen tiéd a Nagy Polarbear emlékérem. Persze mindig kicsit közelebbről kell elindítani a medvét. ( A felülnézeti ábrán a távolságok nem arányosak!)

Sirpinek gratula a jó ötletért!

[57] Csillag2003-11-12 22:20:02

Üdv Mindenkinek!

Sajnos ábrát nem tudok rajzolni, de egy megoldást elmondok a geometria példához: E tükörképe a C-nél levő szögfelezőre G. A C-nél levő szögfelező és az AE metszéspontja F. GD=GF, mert

\frac{GD}{DC} =\frac{BG}{BC} =\frac{CG}{CB} =\frac{GF}{FB}

(szögfelezőtétel többszöri felhasználása, GCB\angle=GBC\angle=20o)

Tehát GD=GF=GE=FE(mert GEF szabályos háromszög). BGA\angle=40,FGD\angle=140,GDF\angle=20,DF||CB,FDB\angle=DBC\angle=10,DGE\angle=80,GDE\angle=50,BDE\angle=GDE\angle-GDF\angle-FDB\angle=20.

Vagyis a keresett szög 20 fokos.

GB

Előzmény: [46] jenei.attila, 2003-11-10 10:44:46
[56] Lóczi Lajos2003-11-12 19:38:44

Tetszetős ez a megoldás... Kérdezném, kinek mi a véleménye e megoldás alábbi határesetéről: az északi sarkponttól 1 km-re délfelé kezdi meg az útját; 1 km-t északra haladva bejut az É sarkra, kelet felé onnan nem tud (mert nem lehet) haladni, tehát nem mozdul, majd dél felé 1 km-t ballag és visszajut a kezdőpontba.

Azaz, elfogadjuk-e "1 km keletre haladásnak" azt, ha valahol nem lehet kelet felé haladni.

Másik megjegyzésem: hogyan lehetne (formálisan, esetleg rajz nélkül) bizonyítani, hogy több lehetséges útvonal nincsen? (Hiszen az első megoldás is meggyőzőnek tűnt.)

Azzal is érdekes -- és minden bizonnyal sokmegoldású -- feladatokat lehetne gyártani, ha pl. a megtett távolságok összemérhetők/meghaladják a bolygó (fél)kerületét.

Előzmény: [55] Sirpi, 2003-11-12 14:58:22
[55] Sirpi2003-11-12 14:58:22

Lorybetti: a feltételek csak úgy teljesülhetnek, ha a medve kezdetben pontosan a déli sarkponton áll, majd halad É fele, K fele és D fele és visszajut a déli sarkpontra.

Nem csak így lehet... Vegyünk az északi sarkpont közelében egy olyan szélességi kört, aminek kerülete osztja az 1km-t, és a kiindulópont ettől 1km-rel délre legyen. Ebben az esetben az É, K, D út triviálisan a kezdőpontba vezet, és akkor mégse pingvint találtunk :-) Vagyis az eredeti feladat is értelmes, nem kell permutálni az irányokat.

S

Előzmény: [50] lorybetti, 2003-11-10 22:23:48
[54] Fálesz Mihály2003-11-12 13:46:35

Kedves Onogur,

Gratulálok!

Előzmény: [53] Hajba Károly, 2003-11-12 01:47:01
[53] Hajba Károly2003-11-12 01:47:01

Kedves Mihály!

Nem csalás, nem ámítás,

a 2. feladatra a megoldás :o)

Előzmény: [2] Fálesz Mihály, 2003-10-30 10:22:23
[52] Bubu2003-11-12 01:14:45

Rendbonto leszek, elnezest erte... Szoval a billiardgolyos feladat (amit egyebkent anno GY peldakent lekuzdottem:)) egy kulonleges matematikai kepzettseggel nem biro (erettsegi), de egyebkent feletteb intelligens rokonomat "megihlette". Azt allitja, hogy 5 meressel 12 golyobol ki tud valasztani 2 db eltero tomegut! Precizebben: van 12 kulsore egyforma golyo. 10 tomege megegyezik, kettoje elter (hogy milyen "iranyban" es mennyire, azt nem tudjuk). Egy ketkaru merleg segitsegevel valasszuk ki a ket kulonc golyot ot meressel. A megoldasrol sejtelmem sincs, de a hetvegen fogok vele foglalkozni. Aki barmilyen reszeredmenyt/otletet tud, az mailezzen legyen szives!

[51] lorantfy2003-11-11 23:00:51

A tevés feladat megoldása:

Az osztószámok: k , l, m, a tevék száma: n és k < l < m < n.

A végakarat teljesítésének szükséges feltétele a kölcsönkért 1 tevével:

\frac{n+1}{k}+\frac{n+1}{l}+\frac{n+1}{m}=n

Mindkét oldalt elosztva (n+1) –el és \frac{1}{n+1} –et mindkét oldalhoz hozzáadva:

\frac{1}{k}+\frac{1}{l}+\frac{1}{m}+\frac{1}{n+1} = 1

Ezt az egyenletet kell megoldanunk a 0 < k < l < m < n+1 : egész számok feltétellel.

Látszik, hogy k = 2, ugyanis k = 3 esetén a lehető legkisebb l, m, n+1 értékekre is az összeg 1-nél kisebb:

\frac13+\frac14+\frac15+\frac16=\frac{59}{60}

Már csak három ismeretlenünk van:

\frac{1}{l}+\frac{1}{m}+\frac{1}{n+1}=\frac12

\frac15+\frac16+\frac18=\frac{59}{120}<\frac12

emiatt l lehetséges értékei: l = 3, l = 4

Kezdjük l = 3–mal:

\frac{1}{m}+\frac{1}{n+1}=\frac16

és 6 < m < 12 ( az összeg felének reciprokánál kisebb)

n+1=\frac{6m}{m-6}=6+\frac{36}{m-6}

Tehát (m-6) osztója 36-nak.

m = 7, n+1 = 42, n = 41 jó megoldás,

m = 8, n+1 = 24, n = 23 jó megoldás,

m = 9, n+1 = 18, n = 17 jó megoldás,

m = 10, n+1 = 15, n = 14 NEM jó megoldás, mert \frac {n+1}{m} nem egész szám.

l = 4 a következő eset

\frac{1}{m}+\frac{1}{n+1}=\frac14

és 4 < m < 8 ( az összeg felének reciprokánál kisebb)

n+1=\frac{4m}{m-4}=4+\frac{16}{m-4}

Tehát (m-4) osztója 16-nak.

m = 5, n+1 = 20, n = 19 jó megoldás,

m = 6, n+1 = 12, n = 11 jó megoldás.

Összesen 5 megoldást találtunk!

[50] lorybetti2003-11-10 22:23:48

Kedves Fálesz Mihály!

Egyetértek Veled, így szeretném csökkenteni a megoldatlan példák számát.A medvés példa- Fizban 22.es hozzászólása A szöveg így szólt: "Elindul Észak felé, és megy 1 km-t. Ezután elfordul Kelet felé, és megint megtesz 1 km-t. Aztán Délnek fordul, és -ki gondolta volna- megtesz még 1 km utat. Ezután a medve visszajut a P pontba."

A feladat megoldása: a feltételek csak úgy teljesülhetnek, ha a medve kezdetben pontosan a déli sarkponton áll, majd halad É fele, K fele és D fele és visszajut a déli sarkpontra. Tartok töle, hogy Fizban rosszul írta az irányokat, mert így a medve fekete-fehér színű és Pingvin névre hallgat. Ha jegesmedvéről lenne szó-ami persze fehér: az irányok sorrendje: D, K és É vagy K, É, D vagy É, D, K (utóbbi két esetben csak érinti az északi sarkpontot)

Értékes megjegyzés: A medve olyan gömbi háromszögben mozog, melynek minden szöge derékszög. Lehet hogy Bolyait is ez ihlette meg?

[49] Fálesz Mihály2003-11-10 18:10:51

Sziasztok,

Kicsit kezdenek elburjánzani a meg nem oldott feladatok. Pillanatynilag a következőkre nincs még teljes megoldás:

-- 2. feladat (9 pont), 2. hozzászólás

-- 3. feladat (emberevők) [3]

-- 5. feladat (100 láda pénz) [6]

-- milyen színű a medve [22]

-- tevék [26]

-- Rubik-hasáb [43]

-- mekkora az EDB szög [46-47]

Összesen 7, ami túl sok. Azt javaslom, hogy most egy darabig ne írjunk új feladatokat, inkább ezekere lássunk megoldást, és a továbbiakban is törekedjünk arra, hogy ne legyen egyszerre - mondjuk - háromnál több megoldatlan feladat.

F.M.

[48] Sirpi2003-11-10 14:18:59

Ez a szummafelcserélés tökéletes megoldás, gratula, én is így csináltam (mellesleg azért nem így adtam fel, mert így sokkal könnyebb, csupán a 2, 3, 5, 8 kitevőket kivéve szerintem nehezebb feladatot kapunk.

Előzmény: [40] Pach Péter Pál, 2003-11-07 23:14:59
[47] lorantfy2003-11-10 11:21:06

Egy ábra a lenti feladathoz. (Imádom az Euklides programot!)

[46] jenei.attila2003-11-10 10:44:46

Egy geometria feladat: Az ABC egyenlő szárú háromszög AB alapon fekvő szögei 80 fokosak. A-ból az alappal 60 fokos szöget bezáró egyenes a BC szárat E pontban, B-ből az alappal 70 fokos szöget bezáró egyenes az AC szárat D pontban metszi. Mekkora az EDB szög?

[45] Hajba Károly2003-11-10 01:19:09

> köszönöm, hogy ilyen szép táblázatos formában feltetted az eredményt

Tanulom a TeX-et. :o)

> Te biztosan emlékszel még a RUBIK kockára

Mi az, hogy emlékszem! Engem a gimi 3. osztályában ért (ma 11. o.), s a kockám nemegyszer a tanári asztalon vészelte át az óra második felét több más kockával egyetemben. Így az ábrád öt percnyi tanulmányozása után rájöttem a "trükk"-re, de hagyok mást is gondolkodni.

Előzmény: [43] lorantfy, 2003-11-08 15:50:59
[44] Lóczi Lajos2003-11-09 16:21:43

Valóban, ez így szép és jó. Utólag természetesen a "mi" formulánkat is megtaláltam, pl. a http://mathworld.wolfram.com/RiemannZetaFunction.html oldalon ez a (23)-as formula :-) Érdemes megnézni, van néhány szép ábra (és csaknem 100 egyéb dzeta-képlet)...

Előzmény: [40] Pach Péter Pál, 2003-11-07 23:14:59
[43] lorantfy2003-11-08 15:50:59

Kedves Károly!

Gratulálok a megoldáshoz és köszönöm, hogy ilyen szép táblázatos formában feltetted az eredményt!

Te biztosan emlékszel még a RUBIK kockára és remélem, hogy a fiatalabbak is ismerik. Nekem nagy sikerélmény volt, hogy meg tudtam oldani. 3 napom ment rá egy téli vizsgaidőszakban és meg is lett az eredménye, 4-es lett az analízis vizsgám… A következő nyáron Angliában jártam és ott lehetett kapni a Rubik kocka mindenféle változatát. Vettem is egy nyolcszög alapú hasáb alakút és összekeverés után a begyakorolt transzformációkkal próbáltam visszaforgatni az alaphelyzetbe. Rejtélyes módon az alábbi eredményre jutottam: egy élközépen lébő kocka megfordult a többi mind a helyére került. 9. feladat : Hogyan lehetséges ez?

[42] Hajba Károly2003-11-08 00:46:23

Kedves László!

Igazad van, én is megtaláltam az 5 megoldást.

K L M N
2 3 7 41
2 3 8 23
2 3 9 17
2 4 5 19
2 4 6 11
Előzmény: [38] lorantfy, 2003-11-06 23:19:20
[41] lorantfy2003-11-08 00:39:03

Kedves Fórumosok !

Örülök, hogy ilyen sokan foglalkoztatok a biliárdgolyós példával, még idemásolok egy megoldást, ami felhasználja ugyan az előbbi mérés eredményét, de talán annak aki később idetéved érthetőbb:

A 12 golyót 3 4-es csoportra bontom.

OOOO OOOO OOOO

Két 4-es csoportot összehasonlítok a mérleggel (1. mérés)

OOOO -- OOOO

1.1. Egyenlők: ekkor a maradék 4 között van az eltérő

OOOO = OOOO HHHH

Veszek 2-t az első 8 golyó közül (ezek jók) és 2-t a maradék 4-ből

OO -- HH HH

Összemérem őket (2. mérés),

1.2. Ha lebillen a mérleg akkor a mérlegen lévő kettő (HH) közül a 3. méréssel eldöntöm melyik az eltérő golyó.

1.3. Ha egyenlő a 2. mérés eredménye akkor a nem mért 2 közül (HH) döntök a 3. méréssel. (Egyiket összemérem egy jó golyóval)

2.1. Ha a két 4-es csoport összemérésekor lebillen a mérleg. Ekkor amerre lebillent azt a 4 golyót N betűvel jelölöm ( ezek között lehet egy nehezebb)a másik oldalon lévő 4-et K betűvel jelölöm (ezek között lehet egy könnyebb)

Pl.: KKKK < NNNN OOOO

2.2. Bal oldalra felteszek a mérlegre 3 db K jelű golyót és 1 db N jelűt, jobb oldalra pedig 1 db (a megmaradt) K jelűt és a 3 db biztosan jó golyót. (Még 3 db N jelű és egy jó (O) marad ki)

KKKN -- KOOO NNN O

Nézzük az eseteket:

3.1. Ha a mérleg jobbra billen le. Ekkor a bal oldali 3 K közül 1 golyó könnyebb.

KKKN < KOOO NNN O

Ezek közül egy méréssel tudok dönteni, hiszen tudom, hogy a hibás golyó könnyebb. Kettőt összemérek, amelyik felemelkedik az a hibás. Ha egyenlő a kettő összemért, akkor a 3. a hibás golyó.

3.2. Ha a mérleg egyensúlyban marad akkor a kimaradt 3 db N jelű golyó

KKKN = KOOO NNN O

között van egy nehezebb, amit a 3. méréssel az előzőhöz hasonlóan el lehet dönteni.

3.3. Ha a mérleg balra billen ki, akkor ezt okozhatja a bal oldali N jelű golyó vagy a jobb oldalon lévő K jelű golyó.

KKKN > KOOO NNN O

Ezt a 3. méréssel könnyen el lehet dönteni, ha pl. a K jelűt összemérem egy jó golyóval. Ha felemelkedik akkor ez a hibás, ha egyenlők, akkor az N jelű.

[40] Pach Péter Pál2003-11-07 23:14:59

A 8. feladatra írok megoldást, úgyhogy, aki még nem oldotta meg (és szeretne rajta gondolkozni), ne olvassa tovább. Tekintsük a következő átalakításokat:

\sum_{k=2}^{\infty} (\zeta(k)-1)=\sum_{k=2}^{\infty} \left(\sum_{n=2}^{\infty} \frac1 {n^k}\right)=\sum_{n=2}^{\infty} \left(\sum_{k=2}^{\infty} \frac1 {n^k}\right)=\sum_{n=2}^{\infty} \frac1 {n(n-1)}=

=\sum_{n=2}^{\infty} \left (\frac1 {n-1}-\frac1 {n} \right)=1

Pozitív számokat összegzünk, és a határérték valóban létezik (olvassuk az átalakításokat hátulról visszafelé), így nem "csaltunk", amikor megcseréltük a két szummát. Ezen kívül a mértani sor összegképletét, és egy ún. "teleszkópos trükköt" alkalmaztunk.

Az előbb bizonyított állítás nyilvánvaló következménye, hogy

\sum_{k=2}^N (\zeta (k)-1) <1,

ugyanis az előbbi összegnek van olyan tagja, ami ebben az összegzésben nem szerepel. (Mint már megállapítottuk, minden tag pozitív: 0<\frac1 {n^k})

Pach Péter Pál

Előzmény: [30] Lóczi Lajos, 2003-11-05 23:59:16
[39] lorantfy2003-11-07 09:56:01

A biliárdgolyós példa alábbi megoldását Gáti Beatrix küldte nekem.

[38] lorantfy2003-11-06 23:19:20

Kedves Csillag! Nagyon szép a megoldásod, gratulálok! Holnap felteszek hozzá egy táblázatot, hogy mikor melyik golyó jön ki, igy mindenki ellenőrizheti, hogy jó is. Elemben a tevés példán gondolkodók még keresgélhetnek, ha van idejük, mert én 5 megoldást találtam.

[37] Csillag2003-11-06 16:02:59

A billiárdgolyós probléma mindkét nehezített változatát megoldja a következő három mérés. Ezzel 12 golyó esetén meghatározható, hogy melyik volt hibás és hogyan, 13 golyó esetén pedig, hogy melyik volt hibás: 1.mérés: (x1,x2,x3,x4) összehasonlítása (x5,x6,x7,x8)-cal 2.mérés: (x1,x2,x5,x11) összehasonlítása (x3,x6,x9,x10)-zel 3.mérés: (x1,x6,x9,x11) összehasonlítása (x3,x4,x7,x12)-vel

Előzmény: [20] Kós Géza, 2003-11-05 12:21:41
[36] Kós Géza2003-11-06 14:24:35

Kedves Csimby,

Amit írtatok, az mindenképpen megérdemel egy fél Túró Rudit, de jobb lenne egy szép, világos, kerek megoldássá átírni. Ehhez pontosabban kell kezelni a falvak és a hittérítők lehetséges állapotait.

Előzmény: [23] Csimby, 2003-11-05 18:21:35
[35] lorantfy2003-11-06 14:18:01

Az eredeti tevés példa úgy szólt, hogy 11 tevét örökölnek és hogyan oszthatnák el ha a legidősebb felét, a középső harmadát, a legkisebb hatodát örökölte. És a bölcs kádi javaslatára kölcsönkérnek egy tevét, amit az osztozkodás után vissza is adnak.

[34] Fálesz Mihály2003-11-06 13:06:27

Ha jól értem, a végén maradnia kell egy tevének, amit visszadanak.

Előzmény: [31] Rizsa, 2003-11-06 12:27:26
[33] Hajba Károly2003-11-06 12:43:32

Hát igen! Mivel a reciprokösszeg lehet 1,0 is, ezért ezt elnéztem, tehát ezek szerint 3 megoldást találtunk eddig.

Előzmény: [32] Hajba Károly, 2003-11-06 12:31:28
[32] Hajba Károly2003-11-06 12:31:28

A 7. feladathoz:

Először is elnézést mindenkitől, de még nem sikerült elmélyedni a TeX-ben, így annak lehetőségeit most nem használom ki. (De ami késik, nem múlik.)

Mivel a tevék számához még 1-t hozzáadva el tudták osztani kényelmesen és még meg is maradt a kölcsönteve, ezért a K, L, M számok reciprokösszege alulról közelíti az 1-t, de nagyobb mint a legkisebb elérhető N-re N/(N+1)=0,9; ahol N=2+3+4=9. (Lehet ennél finomabban is lehatárolni.)

Tehát azokat a számhármasokat kell megvizsgálni, melyek reciprokösszege ebbe a tartományba esik. K=2, mivel a 3, 4, 5 számhármasra 0,78..; továbbá 2, 4, 5 számhármasra 0,8666... jön ki, mint alsó korlát, másrészről 2, 3, 6 számhármasra 1,00 jön ki, mint felső korlát. Én a két számhármas között két megoldást találtam:

K=2, L=3, M=7, N=41

K=2, L=4, M=6, N=11

Hajba Károly

Előzmény: [26] lorantfy, 2003-11-05 21:34:18
[31] Rizsa2003-11-06 12:27:26

A tevel szama 17, es 2, 3, 6 reszre kell bontani a majdani 18at.

[30] Lóczi Lajos2003-11-05 23:59:16

Mivel közben sikerült tisztáznom az előző hozzászólásban megfogalmazott sejtésem (a bizonyítás nem nehéz, teljesen elemi, csak két apró ötlet kell, és minden szükséges információ megtalálható a hozzászólásban), ezért

8. feladat: Mutassuk meg, hogy tetszőleges N\ge2 természetes számra


\sum_{k=2}^N \left(\zeta(k)-1\right)<1.

Előzmény: [29] Lóczi Lajos, 2003-11-05 23:20:59
[29] Lóczi Lajos2003-11-05 23:20:59

Az 1. feladattal kapcsolatban a következő érdekes általánosítás tűnik igaznak: nevezetesen nem számít, hogy mely hatványfüggvények reciprokait szerepeltetjük a szummákban (ami ott 2, 3, 5, illetve 8 volt). A rövidség kedvéért vezessük be a következő (szokásos) jelölést: ha s>1 valós szám, akkor legyen


\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^s}

a híres-nevezetes dzeta-függvény. (Mint ismeretes, ennek a függvénynek komplex s-ekre történő kiterjesztése szerepel az egyik leghíresebb, mindmáig megoldatlan matematikai sejtésben, a Riemann-hipotézisben.)

Ezzel a jelöléssel az előző hozzászólásban beláttuk tehát, hogy


\left(\zeta(2)-1\right)+\left(\zeta(3)-1\right)+\left(\zeta(5)-1\right)+\left(\zeta(8)-1\right)<1.

Sejtésem a következő: 2-től kezdve akárhány ilyen tagot adunk össze, az összeg mindig kisebb lesz 1-nél, azaz, ha N\ge2 tetszőleges természetes szám, akkor


\sum_{k=2}^N \left(\zeta(k)-1\right)<1.

A sejtést alátámasztják a Mathematica programmal végzett numerikus kísérletek (például ha N=50, akkor a fenti összeg körülbelül 0,99999999999999911...), valamint a Mathematica azon állítása, hogy


\sum_{k=2}^{\infty} \left(\zeta(k)-1\right)=1.

(Ha a program ezt állítja, akkor valószínűleg ezt már bebizonyította valaki, a sejtéshez nyilván "elég" lenne ez utóbbi állítást megmutatni, hiszen a szumma N-ben monoton nő.)

A sejtéssel kapcsolatos bármely észrevételt szívesen veszek.

[28] Lóczi Lajos2003-11-05 22:56:02

Ha szabad integrálokat használni, akkor következzen egy megoldás az 1. feladatra.

Mivel az összegzendő kifejezések szigorúan monoton fogyóak, ezért felfoghatók integrálok alsó (téglalapos) közelítőösszegeiként -- csak arra kell vigyáznunk, hogy az integrálás határát 1-gyel hamarabb kezdjük, mint a szummázásét. (A szumma első két tagját külön kell kezelnünk, mert különben felső becslésünk túl durva lenne.) Tehát


\sum_{n=2}^{\infty}\left(\frac{1}{n^2}+\frac{1}{n^3}
+\frac{1}{n^5}+\frac{1}{n^8}\right)=
\sum_{n=2}^{3}\left(\frac{1}{n^2}+\frac{1}{n^3}
+\frac{1}{n^5}+\frac{1}{n^8}\right)+
\sum_{n=4}^{\infty}\left(\frac{1}{n^2}+\frac{1}{n^3}
+\frac{1}{n^5}+\frac{1}{n^8}\right)\le


\frac{944905}{1679616}+\int_{3}^{\infty}\left(\frac{1}{x^2}+\frac{1}{x^3}
+\frac{1}{x^5}+\frac{1}{x^8}\right)dx=


\frac{944905}{1679616}+\left[-\frac{1}{x}-\frac{1}{2x^2}
-\frac{1}{4x^4}-\frac{1}{7x^7} \right]_3^\infty=
\frac{944905}{1679616}+\left( 0+\frac{24007}{61236}\right)=


\frac{11223679}{11757312}<1.

Előzmény: [1] Sirpi, 2003-10-30 10:07:33
[27] Lóczi Lajos2003-11-05 22:15:39

A már említetteken kívül pár egyéb "ötlet" a tréfás kérdés megválaszolásához.

Az ex függvényen kívül a (konstans.ex) függvény, mint általános megoldás is szóba jöhet (abban az értelemben, hogy a függvény és deriváltja megegyezik).

Speciálisan a kuncogó függvény lehet az azonosan nulla függvény is.

De kuncoghat azért is, mert ő mondjuk a Dirichlet-függvény (amely tehát racionális pontokban 1, irracionálisokban 0, s így sehol sem folytonos, sehol sem deriválható).

Sőt, kuncoghat azért is, mert ő pl. az x2 függvény, s így deriválás után az értékkészlete nagyobb lesz.

Előzmény: [11] enel, 2003-11-04 14:32:31
[26] lorantfy2003-11-05 21:34:18

Valamikor régen amikor a Scientific American még Tudomány néven magyarul is megjelent olvastam benne egy matek feladványt. De sajnos ez olyan régen volt, hogy a pontos számokat már elfelejtettem, így kénytelen vagyok a feladatot általánosan megfogalmazni: 7. feladat: A gazdag tevekereskedő mielőtt meghalt magához hívta 3 fiát és elmondta nekik, hogy rájuk hagyja N db tevéjét. A tevék K-ad részét a legidősebb, L-ed részét a középső és M-ed részét pedig a legkisebb fia kapja. A kereskedő halála után a fiúk bajban voltak mert az N szám K, L, M egyikével sem volt osztható. Szerencsére éppen egy tevekaraván haladt át a falun és a legkisebb fiúnak támadt egy ötlete. Kölcsönkért egy tevét a karavánból. Így az N+1 tevét el tudták osztani egymás között a végakaratnak megfelelően és még maradt is 1 teve, amit visszaadtak a tulajdonosának. Milyen K,L,M,N számokra teljesíthető a fenti felosztás ? ( K<L<M<N pozitív egész számok!)

[25] Kritya32003-11-05 20:47:52

Most egy kicsit offolok, remélem nem orrol meg rám a Moderátor: olyat hallottam, hogy OKTV napján a versenyig még egy számot sem szabad összeadni.

Előzmény: [21] Frenky, 2003-11-05 15:56:04
[24] Rácz Béla2003-11-05 19:04:54

Ha valakit szétvetne a kíváncsiság, közölhetem, hogy az összes eddigi kétkarú mérleges feladat megtalálható a Skljarszkij-Csencov-Jaglom: Válogatott feladatok és tételek az elemi matematika köréből c. gyűjteményben (I. kötet, rögtön az eleje.)

Igazából ezt a könyvajánlóba kellett volna írnom, mert a Skljarszikij messze a legjobb matekkönyv, ami valaha is a kezembe került. Szovjet minőség!!! ;-)

Előzmény: [20] Kós Géza, 2003-11-05 12:21:41
[23] Csimby2003-11-05 18:21:35

MEGOLDÁS A SZIGETES FELADATHOZ:

Akkor esznek meg egy papot amikor a legközelebbi olyan faluba ér ahonnan egy társa indult (ha egyedül van akkor amikor az indulási faluba visszaér). Tehát ha kezdetben P pap indult, amikorra mindet megeszik, P falu lesz pogány méghozzá az a P amelyből indultak (hiszen egészen addig nyugodtan téríthet egy pap amíg indulási helyre nem ér, ahol is hívő falut talál: -> megeszik, az indulási falu pogány lesz. -> az addig útbaeső falvakat megtéríti*. Az utánuk indulók, mivel nem indulhatnak a meglévő pogány falukból (hiszen ezek induló faluk voltak és mindenki más faluból indul) biztosan olyan faluból kell, hogy induljanak amelyeket már megtérítettek, tehát amint elindulnak, rögtön megeszik őket. Mindenki máshonnan indul, tehát mindenkit máshol esznek meg, tehát mindegyik falu pogány lesz. * probléma akkor lehet, ha a P db pap indulása után még indulnak valamikor pap(ok), de ez még az előtt történik, hogy kialakulna az a helyzet amikor már csak a P db indulási falu pogány (azaz amikor még lehet olyan helyekről indulni amelyet még senki sem térített meg). Ekkor két eset lehet: - az induló már megtérített faluból indul -> meghal rögtön, és a falu pogány lesz - pogány faluból indul (amelyben előtte még senki sem járt) , ekkor felfoghatjuk úgy mintha P+1 pap indult volna, és ugyanaz a megoldás mint P-re.

Kiss Gábor és Csajbók Bence

[22] Fizban2003-11-05 17:53:20

Üdv mindenkinek!

Az én feladatomat biztosan sokan ismerik, de azért leírom, hátha valakinek új:

Van egy medve a Földön egy P pontban. Elindul Észak felé, és megy 1 km-t. Ezután elfordul Kelet felé, és megint megtesz 1 km-t. Aztán Délnek fordul, és -ki gondolta volna- megtesz még 1 km utat. Ezután a medve visszajut a P pontba. A kérdés: Milyen színű a medve?

[21] Frenky2003-11-05 15:56:04

Üdv! nos igen szóval addig eljutottam hogy csoportok kellenek aztán elkezdtem nézni hogy mlyen csoportok néztem 2 erre rájöttem hamar hogy rossz néztem a 3-at ezzel sokat szenvedtem meg persze a 4gyel és ezzel is jutottam elgtovább valahogy úgy próbáltam hogy a régebbi mérés golyóit is belevonoma dologba , pl a régi mérésből két golyót kicserélek a bizonytalan golyók valamelyikére , és akkor ugye ha megint eldől a serpenyő akkor még mindig köztük van a gyanús ha meg nem dől el akkor azok közül az egyik amit elvettem , de végül mindig úgy lett hogy van két gyanús golyóm és nincs több mérés...vagy estetleg 3 bizonytalan golyó és egy mérés.

holnap matek OKTV:-) úgyhogy holnap délelőtt lesz időm letisztázni és föladni a kömalt:-) hozzá is kezdek még most(annál többet alhatok)

[20] Kós Géza2003-11-05 12:21:41

Az feladatot én eredetileg úgy ismertem, hogy azt is meg kell mondani, hogy a kakukktojás könnyebb vagy nehezebb a többinél. Ez ugyan nehezítés, de segít abban, hogy az első mérést kitaláljuk.

Ha n mérésünk van hátra, akkor azoknak összesen 3n lehetséges kimenetele lehet, ezért legfeljebb ennyi lehetséges esetet tudunk a mérések által megkülönböztetni. (Ez akkor is igaz, ha az egyes mérések összeállítása függ a korábbi mérések eredményétől.)

Kezdetben 24 eset van, mert 12 golyó lehet a kakukktojás, és a kakukktojás könnyű és nehéz is lehet. A 3 mérés legfeljebb 33=27 esetet különböztethet meg, a becslés itt (még) stimmel.

Az első mérésnél ugyanannyi golyót, mondjuk k darabot kell tennünk a két serpenyőbe. Az első kérdés, hogy mennyi legyen a k.

Ha a mérleg egyensúlyban marad, akkor a többi 12-2k golyó között van a kakkukktojás, ami összesen 2(12-2k) esetet jelent. Ha k\le3, akkor ez legalább 12 eset, amit nem lehet 2 mérésből megkülönböztetni. Ha k\ge4, akkor legfeljebb 8 eset. A k-t tehát nem szabad 4-nél kisebbnek választanunk.

Ha a mérleg nincs egyensúlyban, akkor 2k ,,gyanús'' golyónk van. Ebből k darab ,,nehéz-gyanús'', a másik k darab pedig ,,könnyű-gyanús'', ez összesen 2k eset. A hátralevő két mérés legfeljebb 9 esetet különböztethet meg, tehát k-t nem szabad 4-nél nagyobbnak választani.

Összefoglalva, az első mérésnél csak négy-négy golyót tehetünk a két mérlegserpenyőbe. Már csak a további méréseket kell kitalálni. :-)

* * *

Aki ismeri vagy már megoldotta a feladatot, gondolkodhat két változaton.

Első változat: van 13, látszólag egyforma golyó, az egyik könnyebb vagy nehezebb a többinél. Három mérésből mondjuk meg, melyik az. (Nem kell megmondani, hogy könnyebb, vagy nehezebb.)

Második változat: van 12, látszólag egyforma golyó, az egyik könnyebb vagy nehezebb a többinél. Három mérésből mondjuk meg, melyik az, és azt is, hogy könnyebb, vagy nehezebb. (Eddig ugyanaz a feladat.) A nehezítés: a mérések összeállítása nem függhet a korábbi mérések eredményétől, előre meg kell mondanunk, hogy az egyes mérésekben mely golyókat tesszük a két serpenyőbe.

Előzmény: [17] lorantfy, 2003-11-05 10:21:31
[19] Kós Géza2003-11-05 11:58:49

Megkértem az e-mailben küldött megoldás szerzőit, hogy másolják be ide a megoldásukat és itt vitassuk meg. (Szerencsésebb, ha nem én másolgatok be ide e-maileket.)

Előzmény: [18] Kós Géza, 2003-11-05 11:36:33
[18] Kós Géza2003-11-05 11:36:33

Azt javaslom, hogy a megoldásokat is ide írjuk, ne tördeljük szét a témát többfelé. Én az emberevős feladatra kaptam egy megoldást e-mailben, mindjárt ide másolom.

[17] lorantfy2003-11-05 10:21:31

Segítség a biliárdgolyós feladathoz: 3 csoportra osztjuk a 12 golyót. Összemérjük az első két csoportot. Ha egyenlő akkor innen már 2 méréssel a könnyű a dolgunk, ha felhasználjuk, hogy az első 8 golyó biztosan "jó". Ha az első mérésnél nem egyenlő a két csoport akkor figyelembe véve, hogy a mérleg merre billent le egy különleges mérést kell összeállítanunk, ahol a mérleg kibillenésének irányából is információkat tudunk szerezni. Na erre kell neked rájönni!

[16] SchZol2003-11-04 20:14:40

Sziasztok!

Én már megoldottam a billiárdgolyós példát, pont ma jött meg Lórántfytól a könyv, amit felajánlott. Szívesen leírom a megoldásom, ha kell.

Üdv,

Zoli

[15] Kós Géza2003-11-04 17:27:58

Írd le, hogy meddig jutottál el.

Előzmény: [14] Frenky, 2003-11-04 17:18:34
[14] Frenky2003-11-04 17:18:34

Üdv! JAJJ ez a billiárdgolyós példa.... érmével ismerem de végülis teljesen mindegy vagy egy hétig gondolkoztam rajta de nem sikerült.... mondjuk helyenként már elég sokáig eljutottam, sőt azt hittem sikerült, de aztán persze nem... na ennek egyszer beírhatnánk a megoldását...:-) mert az életben rá nem jövök...

[13] Kritya32003-11-04 16:37:46

Mert ő az e az x-ediken. Hahaha.

Előzmény: [11] enel, 2003-11-04 14:32:31
[12] Kós Géza2003-11-04 14:53:11

Szia Laci,

Jó kérdés. :-)

Szerintem nem mindegy, hogy ismered a feladatot és a megoldást, vagy te találod meg. Ha te oldod meg elsőnek, és beírod a megoldást, az egyfajta dicsőség, de az is igaz, hogy nem mindig jó túl hamar lelőni a megoldást. Ha viszont ismered és úgy lövöd le, akkor...

Talán úgy kellene felfogni, mintha egy asztaltársaságban ülnénk egy pofa kóla mellett :-). Ott sem mindig jó azonnal bedobni a megoldást, hagyni kell a többieket is gonsolkodni.

Ha viszont egy feladatot régóta nem oldottak meg, akkor lehet kérni, hogy valaki, aki ismeri, írja le. Én már régóta várom, hogy a 4. feladatot megoldja valaki, mert van egy kicsit nehezebb változata is, amit szeretnék majd feladni.

Üdv.

Géza

Előzmény: [11] enel, 2003-11-04 14:32:31
[11] enel2003-11-04 14:32:31

Sziasztok! Nekem egy régi problémám, hogy ha egy feladatnak tudom a megoldását (mindegy, hogy most oldottam meg vagy korábban) akkor mikor "illik" (ha egyáltalán illik) beírni egy fórumra. Utálom, ha hamar megmondják a megoldást, Magam szeretem megoldani a fejtöro"ket, feladványokat. Ez annyira így van, hogy ha egy vicc kérdéssel indul, akkor arra is próbálok "megfelelni". Mesélek egy példát: Két függvény sétál a sivatagban. Odaugrik a rablófüggvény és rájuk ordít. "Adjátok ide az értékkészleteiteket, mert különben lederivállak benneteket!" Erre az egyik függvény elkezd kuncogni. Miért?

[10] Mate2003-11-04 13:05:56

Sziasztok! Úgy látom, ma gyereknap van, úgyhogy ha valaki megcsinálja a novemberi számban kitűzendő elektrosztatika-feladatomat integrálszámítás nélkül, vendégem egy somlói galuskára, és megkapja a Rácz Béla által felajánlott tábla csokit (ugyanis a Tom and Jerry példát úgysem oldja meg senki...)Vigh Máté:))

[9] Rácz Béla2003-11-04 00:33:05

Jó, én pedig felajánlok minimum 1 tábla csokit annak, aki elsőként megoldja Kós Géza: Tom és Jerry c. feladatkölteményét (Kömal 2003/5.) - Természetesen csak akkor, ha nem maga Géza az illető.

[8] Kós Géza2003-11-02 17:51:05

Az emberevős feladat első megoldójának én is felajánlok egy Túró Rudit. :-)

Előzmény: [5] lorantfy, 2003-10-31 23:34:57
[7] Kós Géza2003-11-02 17:49:41

Sirpi - ha jól tudom - most külföldön van, de minden bizonnyal úgy gondolta, hogy a megoldásokat is ide írjuk.

Előzmény: [4] Lóczi Lajos, 2003-10-31 20:12:50
[6] SchZol2003-11-01 22:12:06

5.feladat:

Adott 100 láda mindegyikben 1000db 2grammos 1 forintos, kivéve egyett amiben 1grammosak az 1 forintosok. Legkevesebb hány mérésből tudjuk eldönteni melyik ládában vannak a selejtes egy forintosok, ha minden láda ugyanúgy néz ki, és csak egy egykarú mérlegünk van.

Szívesen fogadom a megoldásokat emailben.

Zoli

[5] lorantfy2003-10-31 23:34:57

4.feladat: Van 12 db biliárdgolyó mindegyik ugyanolyan színű és formájú csak az egyiknek a súlya eltér a másiktól. Azt nem lehet tudni hogy könnyebb vagy nehezebb. A feladat a következő: Hogyan tudod megállapítani biztosan hogy melyik a kakukktojás, ha van egy kétkarú mérleged és csak 3-szor mérhetsz vele? Az első e-miles megoldónak Gazsó Zoltán: "Visual" Adatbázis kezelők objektum-orientált programozása c. könyvét tudom felajánlani vagy egy tábla csokit.

[4] Lóczi Lajos2003-10-31 20:12:50

Kedves Sirpi,

nem tudom, hogy eldöntöttétek-e már, ebbe a rovatba várjunk-e megoldásokat (vagy csak bizonyos idő után), esetleg nyissunk egy új témát külön a megoldásoknak, hogy ne lőjük le a poént...szóval ha van elképzelés erről bárki részéről, írja meg.

Lajos

Előzmény: [1] Sirpi, 2003-10-30 10:07:33
[3] Kós Géza2003-10-30 11:08:09

3. feladat. Az Óperenciás tenger közepén áll az Emberevők Szigete. Ez a sziget kör alakú, s partja mentén pontosan 26 falu található, lakosaik pogányok. A falvak nevei sorra az angol ábécé 26 betűjével kezdődnek (ciklikus sorrendben). A szigetet történelme folyamán pontosan 26 angol hittérítő kereste fel, ezek nevei is az angol ábécé különböző betűivel kezdődtek. Minden hittérítő először abba a faluba ment, amely nevének kezdőbetűje az ő neve kezdőbetűjével megegyezett. A szigeten egyszerre több hittérítő is tartózkodhatott, de egy faluban egyszerre csak egy. Ha egy hittérítő olyan faluba ért, amelynek lakosai éppen pogány hiten voltak, akkor megtérítette őket, és tovább ment a tengerpart mentén a következő faluba úgy, hogy a tenger jobb kéz felől essen. Ha viszont megtérített faluba ért, akkor a falu lakosai visszatértek a pogánysághoz és felfalták a szerencsétlent.

A hittérítők sorsa nem kétséges, de vajon milyen hiten vannak a falvak a hittérítők működése után?

(A feladat a KöMaL 1983. áprilisi számában jelent meg.)

[2] Fálesz Mihály2003-10-30 10:22:23

Javaslom, hogy számozzuk a feladatokat, ahogyan az két azonos nevű uralkodótól (vagy éppen világháborútól) kezdve szokás. :-)

Szóval, hátha valaki nem ismeri ezt a több, mint száz éves feladatot, amely a nagy Samuel Lloydtól származik.

2. feladat. A képen 9 pont látható; egy négzet csúcsai, középpontja és oldalfelező pontjai. Rajzoljunk olyan folytonos töröttvonalat, amely csupán 4 (négy), egymáshoz csatlakozó szakaszból áll, és mindegyik ponton átmegy.

(Nem csalás, nem ámítás, ilyen töröttvonal tényleg létezik!)

[1] Sirpi2003-10-30 10:07:33

Ha valakinek van valami jó matekpéldája, amit érdemesnek tart a többiekkel megosztani, akkor ide bátran beírhatja. Aktív KöMaL feladatokat légyszi ne irjatok be!

Következzen elsőnek egy saját feladatom, azért is, hogy a TeX-et gyakoroljam:

Biz. be:

sum_{n=2}^infty frac{1}{n^2}+sum_{n=2}^infty frac{1}{n^3}+sum_{n=2}^infty+ frac{1}{n^5}+sum_{n=2}^infty frac{1}{n^8} < 1

Sirpi

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]