Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]  

Szeretnél hozzászólni? Jelentkezz be.
[406] Sirpi2004-07-02 14:25:59

Szebb.

Előzmény: [405] nadorp, 2004-07-02 12:36:16
[405] nadorp2004-07-02 12:36:16

Nem tudom,hogy szebb-e, de kicsit rövidebb.

Csináljunk az egyenletből egyenletrendszert:

log3(2x+1)=y és log2(3x-1)=y

azaz,

2x+1=3y

3x-1=2y

összeadva a két egyenletet 2x+3x=2y+3y. Mivel az f(x)=2x+3x függvény szigorúan monoton nő, ezért az előző egyenlőség csak x=y esetén teljesül, azaz

log3(2x+1)=x

2x+1=3x

\left(\frac23\right)^x+\left(\frac13\right)^x=1

A fenti egyenletnek az x=1 megoldása,és másik nincs is, mert a bal oldalon egy szigorúan monoton csökkenő függvény áll.

Előzmény: [404] Sirpi, 2004-07-02 11:50:23
[404] Sirpi2004-07-02 11:50:23

Nos, mivel eddig senki nem reagált senki a példára, beírom ide a ronda, favágós megoldásomat. Ha valaki tud szebbet, szóljon.

Legyen f(x)=log3(2x+1), g(x)=log2(3x-1). Olyan x-ek kellenek, amire f(x)=g(x).

Könnyű látni, hogy az x=1 megoldás, továbbá g(x) csak pozitív x-ekre van értelmezve. Ha ezek után megmutatjuk, hogy a közös értelmezési tartományon g(x) "gyorsabban nő", mint f(x), akkor készen is vagyunk, hiszen ebben az esetben az x=1-en kívül nem létezhet más megoldás.

Egyszerú átalakítással, felhasználva a logab=logcb/logca azonosságot, kapjuk, hogy f(x) = \frac1{\ln 3} \cdot (2^x+1) és g(x) = \frac1{\ln 2} \cdot (3^x-1).

f'(x) = \frac 1{\ln 3} \cdot \frac 1{2^x+1} \cdot \ln 2 \cdot 2^x

g'(x) = \frac 1{\ln 2} \cdot \frac 1{3^x-1} \cdot \ln 3 \cdot 3^x

Mindkét derivált pozitív x>0 esetén, továbbá \frac{g'(x)}{f'(x)} = \frac{\ln^2 3}{\ln^2 2} \cdot \frac{3^x}{3^x - 1} \cdot \frac{2^x}{2^x+1}. Itt mindhárom tényező nagyobb, mint 1, vagyis minden x>0-ra g'(x)>f'(x), vagyis a g(x)-f(x) függvény szigorúan monoton nő.

Előzmény: [403] lorantfy, 2004-06-30 06:50:07
[403] lorantfy2004-06-30 06:50:07

86. feladat: Oldjuk meg a köv. egyenletet a valós számok halmazán:

log3(2x+1)=log2(3x-1)

(Hegyi Lajos Emlékverseny 1999. 10.oszt.)

[402] lorantfy2004-06-28 10:40:04

Szép volt Fiúk!

Gratulálok!

(2000 évi versenyfeladat volt 9.osztályosoknak) Kár, hogy a TECH nem működik rendesen!

Előzmény: [400] nadorp, 2004-06-28 10:18:27
[401] Hajba Károly2004-06-28 10:22:24

Kedves Péter!

Így már jó. Gratulálok. Egyszerűbben oldottad meg, mint én. :o)

HK

Előzmény: [400] nadorp, 2004-06-28 10:18:27
[400] nadorp2004-06-28 10:18:27

Újabb kísérlet a 85. feladatra.

Alakítsuk át az egyelet bal oldalát.

(x+y)2-4(x+y)+8y=13

(x+y-2)2=17-8y

Ha bevezetjük a z=x+y-2 jelölést, akkor (sajnos a frac nem működik)

y=(17-z2)/8 és

x=(z2+8z-1)/8.

Most már csak z-re kell kikötés. Látszik, hogy ha z páros, akkor y nem lehet egész, viszont ha z páratlan, akkor y - és így x is - egész lesz. Az egyenlet összes megoldása tehát a fenti két képlettel definiált x,y számok, ahol z tetszőleges páratlan szám.( pld x=8 y=-1 a z=5 esetén adódik)

Előzmény: [397] lorantfy, 2004-06-28 09:19:12
[399] Hajba Károly2004-06-28 09:57:14

Kedves László és Péter!

Első ránézésre nem tűnt olyan érdekesnek, mint menet közben kiderült. :o)

Megoldás a 85. feladatra:

(1) (x+y)2-4(x-y)=13

Rendezzük y-ra az (1) egyenletet:

y2+2(x+2)y+x2-4x-13=0

azaz

y1,2=-(x+2)\pmGYÖK(8x+17)

Akkor kapunk egész megoldást, ha a gyök alatti érték négyzetszám. S itt meglepő fordulat következik. :o) Legyen

8x+17=(2n+1)2

\forall(n>1)\inN+-re\existsx. Azaz végtelen sok megoldás létezik. (Remélem jól írtam be a leírást. :o)

Innen a képleteket (x=..., y=...) nem tudom beírni, mivel nem jó jelenleg a TeX értelmezője. :o(

x=\frac{(2n+1)^2-17}{8}

Később folytatom.

HK

Előzmény: [395] lorantfy, 2004-06-27 12:54:37
[398] nadorp2004-06-28 09:55:12

Kedves László !

Teljesen igazad van, de mire ezt észrevettem, már Te is. A megoldásom teljesen rossz, elkapkodtam és elszámoltam. De vam másik, mindjárt leírom, ha még nem késő.

Előzmény: [397] lorantfy, 2004-06-28 09:19:12
[397] lorantfy2004-06-28 09:19:12

Kedves Péter!

Az a gondom, hogy x=4, y=1 ránézésből megoldás. Ez megoldása is az egyenletrendszerednek, de az x=8, y=-1 pár már nem, pedig ezek is jók.

Előzmény: [396] nadorp, 2004-06-28 08:35:24
[396] nadorp2004-06-28 08:35:24

Úgyis régen szóltam hozzá. Megoldás a 85. feladatra.

Egészítsük ki az egyenlet bal oldalát teljes négyzetté.Ekkor

(x+y)2-4(x-y)+4(x-y)2=13+4(x-y)2

[x+y-2(x-y)]2=13+(2x-2y)2

(x-3y)2-(2x-2y)2=13

Két négyzetszám különbsége csak a 49 és 36 esetén lesz 13, ezért a

x-3y=\pm7

x-y=\pm3

egyenletrendszereket kell megoldani. Látható, hogy a négy egyenletrendszerből csak y=2 x=-1 esetén kapunk megoldást.

Előzmény: [395] lorantfy, 2004-06-27 12:54:37
[395] lorantfy2004-06-27 12:54:37

85. feladat: Oldjuk meg az egész számok halmazán a következő egyenletet:

(x+y)2-4(x-y)=13

[394] Lóczi Lajos2004-06-24 12:55:57

Kedves Mihály!

Ahhoz, hogy egy valós függvény deriváltját a 0-ban kiszámolhassuk, szükséges, hogy a függvény értelmezve legyen legalább egy 0-hoz torlódó pontsorozat mentén.

Nem beszélhetünk tehát "csak az origóban deriválható függvényről, amely ott ráadásul kétszer is deriválható", hiszen a második derivált 0-beli értékének kiszámításához az előző bekezdés értelmében ismernünk kellene az első derivált értékeit egy 0-hoz torlódó pontsorozat mentén. Mivel azonban az első derivált csak a 0-ban van definiálva, ez nem lehetséges.

A válasz tehát, hogy ilyen függvény nincs.

Előzmény: [393] Fálesz Mihály, 2004-06-18 14:06:40
[393] Fálesz Mihály2004-06-18 14:06:40

Mutassunk példát olyan valós függvényre, ami csak a 0-ban differenciálható, de ott kétszer is.

[392] lorantfy2004-06-17 19:40:48

Bocs! Elkeztem begépelni a hozzászólást és közben érettségiztettem, aztán csak egy óra múlva küldtem el, így nem láttam a hozzászólásodat!

Előzmény: [391] Sirpi, 2004-06-17 16:38:57
[391] Sirpi2004-06-17 16:38:57

Komplex számok ismerete nélküli megoldásként én arra gondoltam...

Igen, ez az egyszerű, de a második hozzászólásomban erre már én is rájöttem :-)

Az alapállítást f(1)=-1 jelenti, csak (*)-ból nem jöhet ki az állítás.

Teljesen jogos, pontatlanul fogalmaztam. A megoldás vázlata kb. így néz ki:

f(k+3)=f(k)f(3)-f(k-3)=2f(k)-f(k)=f(k), kihasználva az indukciót, a (*) összefüggést, valamint azt, hogy f(3)=2. Utóbbi pedig könnyen látszik, még ha nem is közvetlenül számolunk, akkor is: f(2)=f(1)f(1)-f(0)=1-2=-1, f(3)=f(1)f(2)-f(1)=(-1)2-(-1)=2

Tudom, túlragoztam a dolgot...

Előzmény: [390] lorantfy, 2004-06-17 16:01:24
[390] lorantfy2004-06-17 16:01:24

Szia Sirpi!

Tetszik az f(k) függvényed! Az alapállítást f(1)=-1 jelenti, csak (*)-ból nem jöhet ki az állítás.

Komplex számok ismerete nélküli megoldásként én arra gondoltam, hogy mivel a=1 nem megoldása az egyenletnek, be lehet szorozni mindkét oldalt (a-1)-el.

Így (a-1)(a2+a+1)=0 vagyis a3-1=0 és ha a3=1 akkor persze a2004=1, tehát a keresett kifejezés értéke 2.

Persze a megoldás elég "misztikus" annak aki a komplex számokat nem ismeri. Hogy lehet az, hogy a\ne1 és a3=1?

Előzmény: [388] Sirpi, 2004-06-17 13:01:13
[389] Sirpi2004-06-17 15:08:06

Lehet, hogy elbonyolítottam...

0=0(a-1)=(a2+a+1)(a-1)=a3-1, ahonnan a3=1. Innen pedig a2004=(a3)668=1, ennek a reciproka is 1, összegük 2, ez tehát a végeredmény. Hogy minek gépeltem az előbb ennyit???

Előzmény: [388] Sirpi, 2004-06-17 13:01:13
[388] Sirpi2004-06-17 13:01:13

Ez a 84. feladat poénos. A valós számok korében ugyanis nem teljesül a kezdeti feltétel, hiszen 0=a^2+a+1=(a+\frac 12)^2 + \frac 34 > 0, de ettől pl. a komplex számok körében meg lehet a feladatot oldani.

Viszont az is meg tudja oldani a feladatot, aki nem is hallott a komplex számokról.

Vezessük be a következő jelölést: f(k)=ak+a-k.

Ekkor f(k)f(l)=(ak+a-k)(al+a-l)=(ak+l+a-(k+l))+(ak-l+a-(k-l))=f(k+l)+f(k-l)

Vagyis: f(k+l)=f(k)f(l)-f(k-l) (*)

Mi éppen f(2004)-et akarjuk kiszámolni. Amit tudunk a fenti összefüggésen kívül, az az, hogy f(0)=2, f(1)=-1 és f(k)=f(-k) minden egész k-ra.

Állítás: f(k+3)=f(k) minden k-ra, ez indukcióval bizonyítható a (*) összefüggésből (ezt a részt, ami nem is túl nehéz, rábízom másra). Innen f(2004)=f(0)=2.

/persze tudom, hogy a egy harmadik egységgyök, és innen triviálisan kijön a 2, mint megoldás, de elemi módszerekkel próbáltam a feladatot megoldani./

Előzmény: [387] lorantfy, 2004-06-17 11:35:20
[387] lorantfy2004-06-17 11:35:20

84. feladat: Ha a2+a+1=0, akkor mennyi az értéke a

a^{2004}+\frac{1}{a^{2004}}

kifejezésnek?

[386] Hajba Károly2004-05-30 19:52:40

Kedves László!

Gratula, a feladat megoldva. Ti. a séta mindennapos esemény, így már másnap kimegy az első és kezdődhet a kapcsolgatás, továbbá a kapcsoló tényleg kezdetben lekapcsolt állapotban van, így ez nem probléma.

Ezzel kapcsolatban eszembe jutott egy bónusz kérdés.

Határozzuk meg annak valószínűségét, hogy pontosan 1, 2, .. stb. év múlva milyen valószínűséggel lesznek még benn a rabok. (Szökőnapokat praktikusan nem vegyük számításba.)

HK

Előzmény: [385] lorantfy, 2004-05-30 19:04:39
[385] lorantfy2004-05-30 19:04:39

Kedves Károly!

Kösz a biztatást!

Megörültem, hogy Gyuri a feladatba beleírta, hogy tfh. a kapcsoló le van kapcsolva, de nyilván foglalkozni kell azzal az esettel is ha először felkapcsolt helyzetben van.

Azt hiszem erre az lenne a legjobb megoldás, hogy a megbeszélésen ne jelöljenek ki egy fix számoló embert, hanem kimondják, legyen az a számoló akit a megbeszélés utáni első nap visznek ki sétálni. Mikor kimegy lekapcsolt helyzetbe állítja a kapcsolót és kezdődhetnek a számolási körök.

Ha a kapcsoló alaphelyzete nem ismert és előre kijelölik a számláló embert, akkor az a probléma, hogy amikor először kijut a számláló és azt látja, hogy a kapcsoló fel van kapcsolva, nem tudja, hogy ez volt a kapcsoló alaphelyzete, vagy az első ember kapcsolta fel. Így a számolás 1-el csúszhat.

Erre az a megoldás, hogy megbeszélik előre, hogy akit a megbeszélés utáni első nap visznek ki, az mindenképpen fel állásba állítja a kapcsolót akárhogy is állt és többször nem kapcsol ha máskor kiviszik sétálni.

Még egy probléma lehet, ha a rabok nem tudják előre, hogy a megbeszélés után hányadik naptól kezdve visznek ki minden nap egy embert sétálni.

Ekkor, akit pl a 2. napon visznek ki sétálni, azt gondolhatja, lehet, hogy ő az első. Ezen még gondolkodom.

Előzmény: [384] Hajba Károly, 2004-05-30 17:11:08
[384] Hajba Károly2004-05-30 17:11:08

Kedves László!

A feladat lényegét már megoldottad, csak a kezdeti ún. "peremfeltételeket" kellene még tisztázni. Ki lesz a kijelölt ember, milyen állapotban van kezdetben a kapcsoló és ezt ki kapcsolta oda. Mi történik addig, míg először kiengedik a kijelölt embert?

Üdv: HK

Előzmény: [383] lorantfy, 2004-05-30 13:55:14
[383] lorantfy2004-05-30 13:55:14

82.feladathoz: Mivel csak egy kétállású kapcsolónk van, ezzel csak 1 embert lehet "megszámolni" azután vissza kell állítani alaphelyzetbe. Tehát ki kell jelölni egy nullázó-számlázó embert a rabok közül. Ezenkívül megegyeznek, hogy minden ember csak egyszer kapcsolhatja fel a kapcsolót, de csak akkor ha a sétája során lekapcsolva találja.

Így a számláló ember két sétája között, ha kiengednek egy új embert is, akkor az felkapcsolja a kapcsolót. A számláló ember a következő sétáján megnézi a kapcsolót, ha felkapcsolva találja, akkor növeli eggyel a már kiengedett rabok számát és lekapcsolja a kapcsolót, ha lekapcsolva találja, akkor nem járt kint közben új ember.

Tudja, hogy a rabok száma n, így n-1-nél már szólhat, hogy mindenki járt kint.

Hát, elég sokáig eltarthat a dolog, de mivel minden rab csak egyszer kapcsolhatja fel a kapcsolót, a számláló előbb-utóbb eljut n-1-ig és akkor kiszabadulnak.

Előzmény: [361] Gyuri, 2004-05-24 14:08:19
[382] Hajba Károly2004-05-30 13:42:42

83. feladat:

Vizsgáljuk meg a következő állítások igazságtartalmát:

a) Ez a mondat igaz.

b) Ez a mondat hamis.

Nos? :o)

HK

[381] Hajba Károly2004-05-28 10:59:37

Kedves Csimby!

Ne is mond el a választ, gondolkodom rajta, s a gondolataimat leírom. Az eddigi termés:

Egy N+ szám nem lehet négyzetszám, ha (N mod 5)=(2, 3). Azaz, ha egy szám 5-tel történő osztásának maradéka 2 vagy 3, nem lehet négyzetszám. (Remélem jól írtam fel a képletet.) Gyakorlatilag, ha 2, 3, 7, 8-ra nem végződhet négyzetszám.

Ez az utolsó számjegy vizsgálata, de tovább lehet finomítani, ha nem egy, hanem 2 vagy több utolsó számjegyet vizsgálunk. Például, ha az utolsó 2 jegyet vesszük, akkor a 100 lehetőségből 22 lehet négyzetszám, ciklikusan, huszas eltolással, de ezek vége sem lehet a fenti négy szám.

Másik oldalról a sorozat utolsó jegyeire is kellene találni valami törvényszerűséget, melyet összevethetünk az előbbiekkel. Hát itt még nem sok mindent találtam. Paritása: -, -, +, -, -, +, ... A számok rendjére még nincs semmi ötletem. Minden csűrés-csavarás után visszakapom az eredeti sor jellegét.

Ha van valami ötleted, szólj.

Üdv: HK

Előzmény: [367] Csimby, 2004-05-25 22:53:41
[380] Hajba Károly2004-05-26 15:10:53

Kedves Gyuri!

81. feladathoz

Van egy ötletem az 5 lépéses megoldásra, de sem időm, sem türelmem nincs jelenleg a kidolgozásra. Tehát:

Az 1. lépésben vagy átlósan vagy szomszédosan megvizsgálom a kapcsolók állapotát, de nem változtatok rajta. A 2. lépésben a másik módon vizsgálom meg, így két kapcsolóról konkrét adatom van, de egy harmadikról is lehet elég sok infóm, sőt bizonyos esetekben még a 4.-ről is. Ezek ismeretében a 2. lépésben úgy kapcsolok, hogy Syllabus 7 lépéses módszerének középállapotához jussak. Innen 1-2-1 és kész. Természetesen minden állapot megvizsgálása nélkül nem tudom, hogy mindenképpen el tudok-e ide jutni a 2. lépés során.

Üdv

PS. A hálón szokásos illemszabály szerint teljes nyugalommal tegeződhetünk. :o)

Előzmény: [378] Gyuri, 2004-05-26 14:14:36
[379] syllabus2004-05-26 15:06:19

Valóban a megoldás során nem vizsgáljuk, hogy milyen állapotban fogjuk meg a kapcsolókat.

Bármilyen állapotban is vannak, ezután a 7 kapcsolás után biztosan kinyílnak.

Esetszétválasztással valóban 5 lépésben kinyitható az "ördöngős lakat". :)

Előzmény: [377] Gyuri, 2004-05-26 13:40:35
[378] Gyuri2004-05-26 14:14:36

Kedves Syllabus!

Megértettem a megoldásukat, hibátlan. 1-2-1 vagy kinyitja a zárat, vagy 3. vagy 4. állapotba viszi. 3 pedig 1. vagy 2. állapotba visz. Ezután 1-2-1 újra, s nyitva a zár.

Mindenesetre várom az 5 lépéses megoldást is :)

Szintén a 81-es feladathoz lenne hozzáfüznivalóm. Legyen L db lyuk a kapcsolón, és K db kezünk! A megoldást sajnos nem tudom. Annyit csak, hogy prím L esetén K-nak legalább L-1 -nek kell lennie, hogy biztosan nyitható legyen a zár. Továbbá páros L esetén K=L-2 is elég. Ha mondjuk s()-sel jelölöm a minimálisan szükséges kezek számát a lyukak számának függvényében, akkor: s(3)=2, s(4)=2, s(5)=4, s(6)=4, s(7)=6 de pl. s(8)=?

[377] Gyuri2004-05-26 13:40:35

Kedves Syllabus!

Bevallom, nem tudom :) Mindenesetre 5 lépésböl is ki lehet nyitni!

Üdv szintén!

Előzmény: [376] syllabus, 2004-05-26 13:05:50
[376] syllabus2004-05-26 13:05:50

Kedves Gyuri!

Onogur kiegészítésével megszületett 373-as hozzászólásban megadott megoldás nem jó?

Üdvözlet!

Előzmény: [374] Gyuri, 2004-05-26 12:40:20
[375] Gyuri2004-05-26 12:43:45

Kedves Onogur!

A 82-eshez való hozzászólását köszönöm. Pontosan ez a helyzet!

Előzmény: [364] Hajba Károly, 2004-05-25 10:07:53
[374] Gyuri2004-05-26 12:40:20

Kedves Syllabus!

81-eshez: Érezzük azt is, hogy melyik kapcsoló melyik állásban van. Mondjuk kitapinthatjuk, hogy 0 vagy 1 az állapota. És véges algoritmus kell!

Előzmény: [365] syllabus, 2004-05-25 21:36:12
[373] syllabus2004-05-26 09:53:26

Köszi Onogur az észrevételt! Valóban, a 2. esetet még vissza kell vezetni az egyesre. Csak az 1-ből tudunk biztosan nyitni.

Előzmény: [372] Hajba Károly, 2004-05-26 03:52:50
[372] Hajba Károly2004-05-26 03:52:50

Kedves Syllabus!

A 2. lépés után be kell iktatni újból egy 1-es eljárást és akkor jó lesz. Lehet, hogy csak elfelejtetted beírni. :o)

Tehát az eljárások sorrendje a következő: 1-2-1-3-1-2-1.

Továbbá a 3-as és 4-es állapotot nem kell megkülönböztetni, mivel izomorfak az eljárás szempontjából.

HK

Előzmény: [369] syllabus, 2004-05-26 00:02:54
[371] Hajba Károly2004-05-26 03:18:20

Kedves Syllabus!

Ha jól követtem a gondolatmenetedet akkor a kezdetben 2-es állapotnak lehetséges még zárt állapota:

1. lépés: 1. eljárás - 2-es állapot

2. lépés: 2. eljárás - kinyit v. 1. állapot

3. lépés: 3. eljárás - 3. v. 4. állpot

4. lépés: 1. eljárás - 4. v. 3. állapot

5. lépés: 2. eljárás - 3. v. 4. állapot

:o(

HK

Előzmény: [369] syllabus, 2004-05-26 00:02:54
[370] syllabus2004-05-26 00:11:19

A 4 eset egy kicsit összeszétcsúszott az előbb.

Előzmény: [369] syllabus, 2004-05-26 00:02:54
[369] syllabus2004-05-26 00:02:54

81:

Négy eset lehetséges:

1. 2. 3. 4. 10 11 11 00 01 00 01 10

1. eljárás: Két szembenlévőt megfogom és mindkettőt megcserélem. 2. eljárás: Két egymásmellett lévőt megfogom és mindkettőt megcserélem. 3. eljárás: Két egymásmellett lévőt megfogom és az egyiket megcserélem.

1. lépés: Alkalmazom az 1. eljárást.

Az 1. esetben kinyílt, a 2. eset marad, a 3. és 4. egymásba átvált.

2. lépés: 2. eljárás.

A 2. esetben kinyílt, a 3. és 4. egymásba átvált vagy marad.

(Már csak 3-1-es lehet a kapcsolók állása. :)

3. lépés: 3. eljárás.

Vagy kinyílt, vagy 1-es vagy 2-es esetbe került a zár.

4. lépés: 1. eljárás.

Ha 1-esben volt, akkor kinyílt, ha 2-esben akkor maradt 2-eske.

5. lépés: 2. eljárás.

Heuréka! :)))

[368] syllabus2004-05-25 23:26:31

Kedves László!

Azért kérdeztem, mert ha meg tudjuk a fentet és a lentet különböztetni, akkor ha 3-1 után ellentétest fogunk meg, akkor már egy lépésben kinyithatjuk a zárat.

[367] Csimby2004-05-25 22:53:41

Onogur, nem mondom még meg a megoldást, hátha valaki kitalálja (egyébként én csak olyat ismerek ami az első 1 millió tagra bizonyítja, hogy nincsen benne csak 3 négyzetszám, de szerintem azzal a módszerrel meglehet csinálni teljesen (még nem tettem meg, tehát gonosz dolog volt kitűzni a példát), ráadásul amit ismerek megoldást az is csak algoritmus, de hát vannak itt nálam okosabbak akik majd kitalálják ;-)) Segítség: A sorozat különböző mod.-al vett maradékait kell vizsgálni és így egy csomó kiesik (hiszen minden mod.-ra megvan, hogy mely maradékok nem tartozhatnak négyzetszámokhoz.)

Előzmény: [362] Hajba Károly, 2004-05-24 23:58:07
[366] lorantfy2004-05-25 22:15:53

Kedves Károly!

Kösz az infót! Nem fogtam fel első olvasásra ezt a magában álló kapcsolót, hát hozzáköltöttem egy lámpát. Igy persze túl egyszerű lenne.

81. feladathoz: Szerintem nem lényeges, hogy le vagy fel vannak kapcsolva a kapcsolók, mert azt írja: a zár akkor nyit, ha mindegyik kapcsoló azonos állásban van.

Előzmény: [364] Hajba Károly, 2004-05-25 10:07:53
[365] syllabus2004-05-25 21:36:12

Azt szeretném kérdezni a 81-es feladathoz, hogy mikor megfogunk két kapcsolót akkor azt érezzük, hogy különböző állásban vannak, vagy azt, hogy az egyik "fel" van kapcsolva a másik "le"?

A feladat tehát arra megy ki, hogy véges algoritmust adjunk, vagy egy elég sok lépésben "nagyon valószínű" eljárást keresünk?

[364] Hajba Károly2004-05-25 10:07:53

Kedves László!

Újrafelbukkant Gyuri szellemes feladatain én is elgondolkoztam.

A 81. feladatnál szerintem nem lehet 100 % biztonságú stratégiát kialakítani, de még gondolkodom rajta. A 82. feladatot pedig ismerem. Itt a kapcsoló csak egy állapotot mutat, de nem égőt kapcsol, így egy rab csak akkor jut újabb infóhoz, ha éppen ő van kinn sétán és megnézi a kapcsoló aktuális állapotát.

HK

Előzmény: [363] lorantfy, 2004-05-25 09:31:53
[363] lorantfy2004-05-25 09:31:53

Kedves Gyuri!

Örülök, hogy újra látunk itt a Fórumon és a két jó példának is.

81. feladathoz: Két lyukat választhatunk ki. Vagy szomszédosakat választunk: pl.A-B, vagy átlósan kettőt: pl. A-C. Két kiválasztás után 3 kapcsolót biztos azonos állásba tudunk állítani, legyen ez a 3 A-B-C. Ha a D kapcsoló is ebben az állásban van, akkor a zár kinyílik.

Ha nem, akkor tudjuk hogy D ellenkező állásban van.

Ezután a következő a taktika: Kiválasztunk két lyukat, de csak akkor váltjuk át az egyik kapcsolót, ha ellenkező kapcsoló állást tapasztalunk. Ha a D kapcsolót váltottuk át, a zár kinyílik, ha nem akkor két-két kapsoló azonos állásban fog állni, pl. A és D 1-es, B és C 0 állásban.

Ezután viszont csak akkor fogjuk mindkét kiválasztott kapcsolót átváltani, ha azonos a kapcsoló állás. Ekkor a zár kinyílik.

Egyetlen apró kérdés maradt: Lehetséges-e ezt véges lépésben elvégezni?

82. feladathoz: A megbeszélésen minden rab kapjon egy sorszámot, amit megjegyez és megjegyzi még azt is, mi az utolsó sorszám. A cella falára mindegyik felkarcol egy táblázatot, annyi oszloppal ahányan vannak. Az éppen kint lévő rab annyiszor kapcsolja fel és le a lámpát, amennyi a sorszáma. Ekkor a cellában lévők tesznek egy x-et a megfelelő oszlopba, Ő meg a saját oszlopába, mikor visszaviszik. Ha bármelyik rabnál minden oszlopban lesz legalább egy x, akkor szólhat, hogy kész.

Előzmény: [361] Gyuri, 2004-05-24 14:08:19
[362] Hajba Károly2004-05-24 23:58:07

A 80. feladathoz:

A Fibonacci-számok birodalmába vezet a matematika.lap.hu oldalon található "ugródeszka" - aljas link :o)

Pl.: Fib(300)-ig nincs négyzetszám, de van néhány prím; találtam egy képletet, de nem sokra mentem vele:

Fib(n)= \frac{x_1^n-x_2^n}{x_1-x_2} ahol x1 és x2 a x2-x-1=0 egyenlet gyökei.

HK

Előzmény: [359] Csimby, 2004-05-23 22:59:42
[361] Gyuri2004-05-24 14:08:19

Kedves Mindenki!

A mostani feladatokkal még nem barátkoztam meg, de van két ajándékom.

81.feladat: Egy körlap alakú zárat kell kinyitni. Szimmetrikusan, 4 lyuk található a körlapon. Mindegyik lyukban van egy kétállású kapcsoló, melyek nem látszanak. A zár akkor nyit, ha mindegyik kapcsoló azonos állásban van. A kapcsolók állása viszont kitapintható! Lehetöségünk van kiválasztani két lyukat, majd oda egy-egy kezünkkel benyúlni, majd a kapcsolók kitapintása után azokon állítani. Miután ezt megtettük, a körlap alakú kapcsolótábla forgásnak indul, majd újra megáll. De hogy az eredeti helyzetéhez képest miként, arról semmit nem tudunk, hisz a forgás nagyon gyors volt. Ezután ismét kiválaszthatunk két lyukat, és az elöbb leírt módon operálhatunk. Ismét forgás következik. És így tovább!

Kinyitható-e a zár biztosan? Feltéve persze, hogy nem jelölhetjük meg a lyukakat! Megj.: ábrát nem csináltam, elnézést!

82.feladat: Egy börtönben 100 rab van. Az örök mindennap kiengednek egy rabot sétálni. A választás véletlenszerü. (Ha vki épp tegnap volt kint, attól még ma is kimehet, ilyenfajta megkötések nincsenek.) Megegyeznek a rabokkal, hogy mindenkit elengednek, ha a rabok szólnak, hogy már mindannyian voltak kint legalább 1x sétálni. Viszont a rabok a megegyezés ill. az utána következö stratégia megbeszélése után már nem tudnak egymással kommunikálni. Mindössze 1 kapcsoló van az udvaron, amit kapcsolgathat az éppen kint lévö rab. Tehát tfh. kezdetben a kapcsoló le van kapcsolva. A rabok kitalálták a stratégiát, ezután már az említett módon zajlanak a napok. Mi legyen a strat.? Természetesen ha korábban szólnak, azaz még nem is volt kint mindenki, akkor ugrott az egész. Feltehetö továbbá, h mindenki akárhányszor ki is tud menni, tehát nem halnak meg, meg ilyenek.

Jó fejtörést! (A másodikat még én sem tudom, ma kaptam egy barátomtól.)

[360] Hajba Károly2004-05-24 01:09:41

Kedves Csimby!

Én eddig 3-at találtam: a0=1;a1=1;a12=144. Az Excell 15 jegy pontosságával a73=806.515.533.049.393-ig nincs újabb. Efölött az Excell már alkalmatlan, programozói gyakorlatom nincs, hogy írjak egy rövid rutint, s általam nem ismert egy Fib(n)=... közvetlen képlet, melyből esetleg lehetne következtetni valamit.

Kiváncsi vagyok a Te megoldásodra is.

HK

Előzmény: [359] Csimby, 2004-05-23 22:59:42
[359] Csimby2004-05-23 22:59:42

80.feladat Hány négyzetszám van a Fibonacci-sorozatban?

[358] Kós Géza2004-05-17 20:25:41

http://jpbrown.i8.com/cubesolver.html

(Tudom, hogy nem ilyet keresel, de érdekes. :-) )

Előzmény: [354] skg, 2004-05-13 19:49:14
[357] Kós Géza2004-05-17 14:11:17

Mielőtt az Emberevők Szigete végleg elsülyedne a Feledés Tengerében, próbáljuk meg Csimby gondolatait egy teljes megoldássá rendezni.

Az előzést úgy értettem, hogy két falu között az egyik megelőzi a másikat. Tehát U elindul U-ból, és miközben V felé bandukol, megelőzi őt vetélytársa, a konkurrens felekezet tanait terjesztő T is, és V is partra száll V-ben. Mire U odaér V-be, addigra ott már megették T-t, és U mit sem sejtve tovább mehet W-be, ahol ő lesz a menü. Az U tehát U-ból indul, W-ben végzi, és közben mégis elindult valaki V-ből...

Szeretném hangsúlyozni, hogy az előzés lehetőségét példának hoztam fel arra, hogy sok részlet nincs következetesen és pontosan leírva. A teljesen végig nem gondolt részletekben pedig elbújhat egy olyan hiba, ami az egész megoldást megfúrja.

* * *

Térjünk vissza a megoldásra. Osszuk a misszionáriusokat két csoportra. Az egyikbe tartoznak a szerencsétlenebbek, akiket azonnal megesznek. A másik csoport a még szerencsétlenebbek, akiknek előbb dolgozni is kell; az a falu, ahonnan indulnak, az odaérkezésükkor éppen pogány. Minden még szerencsétlenebb misszionárius (MSZM) megtesz egy bizonyos utat a parton.

Csimby megoldása a következő lépésekből állna:

1. Az MSZM-ek által megtett utak nem fedhetik át egymást; nincs olyan partszakasz, ahol két misszionárius is áthaladt;

2. Az MSZM-ek által megtett partszakaszok egymáshoz csatlakoznak és a sziget teljes kerületét pontosan egszer lefedik.

3. Minden egyes faluban összesen két misszionárius fordult meg, és végül a falu újra pogány lett.

Előzmény: [342] Csimby, 2004-04-23 14:09:11
[356] joe2004-05-15 19:16:15

A 78. feladathoz hasonló, de talán egy kicsit érdekesebb és elegánsabb megoldású a következő:

79. feladat: Tetszőleges n természetes számra állítsuk össze az A és B betűkből az összes lehetséges n betű hosszúságú szót. Osszuk e szavakat két halmazba, Pn-be és Nn-be aszerint, hogy egy adott szóban a BA betűcsoport előfordulásainak száma páros vagy páratlan (a nullát páros számnak tekintjük). Például a BABBBBA szó és az AAAAAAB szó a P7 halmazba, az AABBABB szó és a BABAABA szó az N7 halmazba tartozik. Határozzuk meg, mely n számokra van a Pn és az Nn halmaznak ugyanannyi eleme.

Hogy őszinte legyek, a 78. feladat megoldása nem túl szép, a 79.-re azonban ismerek egy ritka érdekes bizonyítást, ami eltér a "hivatalos" megoldástól és szerintem sokkal szebb.

Ha valaki tudna valamit mondani az ilyen feladatok eredetéről és mélyebb jelentőségéről, azt megköszönném.

[355] joe2004-05-14 18:49:38

Mint új fórumos, egy feladattal kezdeném:

78. feladat: Tetszőleges n természetes számra állítsuk össze az A és a B betűkből az összes lehetséges n betű hosszúságú "szót". Jelölje pn azon n hosszúságú "szavak" számát, melyek nem tartalmaznak sem négy egymást követő A betűt (AAAA csoportot), sem három egymást követő B betűt (BBB csoportot). Határozzuk meg a következő kifejezés értékét

[354] skg2004-05-13 19:49:14

Hi!

Régebben beszéltetek itt a bűvös kockáról (rubik) azt szeretném megkérdezni, hogy tudtok-e olyan lapot, ahol van valami róla?

[353] lorantfy2004-05-11 22:03:57

Kedves Géza és Károly!

Gratulálok a szép megoldásokhoz! Most sajnálom, hogy nem volt elég kitartásom.

Előzmény: [352] Hajba Károly, 2004-05-11 15:22:35
[352] Hajba Károly2004-05-11 15:22:35

Kedves Géza!

Találtál egy második megoldást! Mindenképpen megérdemled a túró rudit. :o)

S íme az én változatom, melyet anno az 1. gimiben fél év firkálgatás után oldottam meg:

Előzmény: [351] Kós Géza, 2004-05-11 15:15:24
[351] Kós Géza2004-05-11 15:15:24

Végül, sok-sok próbálkozás után találtam egy megoldást a 12. feladatra:

(A két kis kanyart azért rajzoltam bele, hogy egyértelmű legyen, hogy merre mennek a szakaszok.)

Előzmény: [60] Hajba Károly, 2003-11-13 00:31:47
[350] Kós Géza2004-04-27 18:57:29

Még ne, hadd próbálkozzak még egyszer... :-)

Előzmény: [349] lorantfy, 2004-04-27 18:38:18
[349] lorantfy2004-04-27 18:38:18

Kedves Károly!

Én egy ideig próbálgattam a hurokkal való összekötést, de nem jött össze. Szivesen látnám a megoldást!

Előzmény: [345] Hajba Károly, 2004-04-27 12:26:17
[348] nadorp2004-04-27 15:42:14

Megoldás a 77. feladatra.

Legyen legelő középppontja O, sugara 1. A karó helye legyen P, a kötél hossza r ( lásd az ábrát). A P középpontú r sugarú kör messe a legelőt a Q és R pontokban.

Legyen RPQ\angle=\alpha. Nyilván \alpha tompaszög, hiszen ellenkező esetben a két körív közti terület nagyobb a legelő felénél és az is látszik, hogy r=2\cos\frac{\alpha}2. A két körív közti terület egy körcikkre és két egybevágó körszeletre bontható, a területre:

T=\frac{r^2\alpha}2+2\left(\frac{\pi-\alpha}2-\frac{\sin(\pi-\alpha)}2\right)=\frac{r^2\alpha}2+\pi-\alpha-\sin\alpha=\frac{\pi}2

Mivel r^2=4\cos^2\frac{\alpha}2=2(1+\cos\alpha), ezért

\alpha(1+\cos\alpha)+\pi-\alpha-\sin\alpha=\frac{\pi}2

\sin\alpha-\alpha\cos\alpha=\frac{\pi}2

Ezt az egyenletet csak közelítőleg lehet megoldani, \alpha=109,19o körül van.Innen r=1,16 egység.

[347] lorantfy2004-04-27 12:33:01

Az 59. feladat így szólt: Oldjuk meg a

log_2{\frac{cos^4{xy}+1}{cos^2{xy}}}=\frac{2}{y^2+4y+6}

egyenletet, ha (x,y)\inR2 !

Az 59. feladat megoldása: A logaritmus „hasában” álló A kifejezés:

A=cos^2xy+\frac{1}{cos^2xy} \geq 2

így log2A\geq1.

A jobb oldali B tört nevezője: y2+4y+6=(y+2)2+2\geq2, így B\leq1.

A két oldal csak akkor lehet egyenlő, ha log2A=B=1. tehát y = -2. A = 2-ből cos2xy=1. cos2(-2x)=cos2(2x)=1, amiből cos2x=1 vagy cos2x=-1, 2x=k\pi.

Tehát x=k \frac{\pi}{2}, ahol k\inZ.

Előzmény: [343] Hajba Károly, 2004-04-27 00:15:48
[346] Hajba Károly2004-04-27 12:29:54

A 40. feladatot visszavonom, mivel feltehetően nemdeterminisztikus és így nem ismert általános megoldása.

HK

Előzmény: [180] Hajba Károly, 2003-12-08 10:43:39
[345] Hajba Károly2004-04-27 12:26:17

A feltettem 12. feladatra több, mint 5 hónapja nem érkezett helyes megoldás. Ezért, ha már senki nem kíván rajta gondolkodni és kívánjátok, közfelkiáltásra közkincsé teszem. :o)

HK

Előzmény: [343] Hajba Károly, 2004-04-27 00:15:48
[344] lorantfy2004-04-27 10:47:14

A 63. feladat ez volt: Három barátnő főzéshez készül, az egyik 5 db fát, a másik 3 db fát hozzott a spórba és így mindhármójuk megfőzött. A harmadik, mivel nem volt tüzifája, 8 forinttal járult hozzá a tüzifa költségekhez. A másik két barátnő milyen arányban osztozik igazságosan a pénzen?

A 63. feladat megoldása: A harmadik barátnő 8 Ft-ot ad a rá eső \frac{8}{3} fahasábért, így \frac{1}{3} fahasáb 1 Ft-ot ér.

Az első barátnő, aki \frac{15}{3} fahasábot adott \frac{7}{3}-al adott többet mint a saját része, így 7 Ft-ot kap, míg a második, aki \frac{9}{3}-ot adott csak \frac{1}{3}-al adott többet mint a saját része, tehát 1 Ft-ot kap a 8 Ft-ból.

Előzmény: [343] Hajba Károly, 2004-04-27 00:15:48
[343] Hajba Károly2004-04-27 00:15:48

Kedveseim!

Az alábbi feladatok még megoldóra várnak. Kellemes töprendést!

HK

[342] Csimby2004-04-23 14:09:11

Kedves Géza, Onogur és Mindenki aki veszi a fáradságot, hogy nyomonkövesse a szigetes feladat megoldását!

Azért nem írok (legalábbis egyenlőre) olyan hozzászólást amiben minden benne van, mert vki úgyis beleköt (ez persze nem baj) és akkor írhatnám újra az egészet. Egyenlőre tehát a legutóbb feltett kérdésekre válszolok:

I. Esetleg valaki meg is előzhette a-t? A hittérítők sorban haladnak, nem hagyhatnak ki falut és egy faluban egyszerre csak egy hittérítő tartózkodhat, tehát nincsen előzés.

II. Ha az a-ból induló misszionárius b-ben végzi, miért ne indulhatott volna közben más pap a kettő között? [326] hozzászólás: "ha lettek volna innen induló papok, akkor a pap meghalt volna az a faluhoz legözelebbi ilyen indulási faluban" (legyen ez a falu y ) Bővebben: Az a és b falu között indulók közül y az a-hoz legközelebbi indulásipont, tehát az a és b között indulók közül csak y járhatott y-ban. Mivel feltettük, hogy időben a az első hittérítő, és I.szerint nicsen előzés, ezért nem lehetséges az sem, hogy valaki a falu előttről indult és így jutott el az a utáni falutól y-ig tartó partszakszra. Tehát a-tól y-ig még senki sem járt egy faluban sem, y-ban pedig egy ember járt, vagyis ha lenne ilyen y falu, akkor a pap y-ban halt volna meg és nem b-ben. Ami ellentmondás! Ebből az is következik, hogy az a-tól a halálozási falujáig, (b-ig) terjedő partszakaszon a-n kívül senki sem indult időben b előtt.

Ha a b-ből induló misszionárius c-ben végzi, nem indulhatott volna közben más pap a kettő között, mert: ha lettek volna innen induló papok, akkor b pap meghalt volna a b faluhoz legözelebbi ilyen indulási faluban. (legyen ez a falu z ) Bővebben: A b és c falu között indulók közül z a b-hez legközelebbi indulásipont, tehát a b és c között indulók közül csak z járhatott z-ben. Mivel az a-tól b-ig terjedő partszakaszon a-n kívül senki sem indult időben b előtt, és I.szerint nicsen előzés, ezért nem lehetséges az sem, hogy valaki b falu előttről indult és így jutott el a b utáni falutól z-ig tartó partszakszra. Tehát b-től z-ig még senki sem járt egy faluban sem, z-ben pedig egy ember járt, vagyis ha lenne ilyem z falu, akkor b pap z-ben halt volna meg és nem c-ben. Ami ellentmondás! Ebből az is következik, hogy a b-től b halálozási falujáig, (c-ig) terjedő partszakaszon b-n kívül senki sem indult időben c előtt.

Bármely két falura bizonyítható az állítás ugyanezzel a gondolatmenettel ...

III. Ha az x-edik faluba megérkezik a majd b , akkor x=a vagy x=b? Azt feltettem, hogy a és b az első két ember aki x-ben jár, tehát a és b közül a második aki oda ér biztosan meghal (legyen ez b). De II. szerint b és a között nem indulhatott senki, tehát a-nak x-ből kellett indulnia.

Csimby

[341] Hajba Károly2004-04-22 20:08:44

77. feladat: (Felesben legel e kecske)

Egy kecskepásztor egyik nap egy kerek legelőre vitte ki egyetlen kecskéjét legelni. De hogy ne kelljen másnap újabb legelő után nézni, úgy szeretné kikötni, hogy csak a legelő felét tudja a kecskéje lelegelni. A karót a legelő szélén verte le. Milyen hosszúra kell a kecske kötelékét engednie?

HK

[340] Kós Géza2004-04-22 16:52:21

Kedves Csimby,

Ha nem veszed zokon, még egy kicsit megdolgoztatlak. A túrórudi csak teljes megoldásért jár, amin nem fog semmilyen javítói kötekedés. :-)

Egy KöMaL-javító szinte minden mondat végén odaírná pirossal, hogy "Miért?". Például miért igaz, hogy ha az x-edik faluba megérkezik a majd b, akkor x=a vagy x=b? Ha az a-ból induló misszionárius b-ben végzi, miért ne indulhatott volna közben más pap a kettő között? (Esetleg valaki meg is előzhette a-t...)

Mindez persze csak akadékoskodás, de azért nem értelmetlen. Egy teljes megoldásban nem lehetnek ilyen homályos pontok, mert ezek hibák forrásai lehetnek. Én úgy látom, hogy közel vagy a megoldáshoz, sok mindent látsz, amin múlik, de a megoldás pontos leírása még mindig hiányzik. (Jó lenne az elejétől a végéig leírni, nem olyan hosszú, és könnyebb elolvasni, ha nem hivatkozik korábi hozzászólásokra.)

Géza

Előzmény: [339] Csimby, 2004-04-22 00:20:43
[339] Csimby2004-04-22 00:20:43

Kedves Onogur!

Legyen x olyan falu ahol 2-nél többen is megfordultak. Legyen az első két ember aki járt x-ben a és b. Ekkor x=a vagy x=b, legyen most x=a. Tehát b pap a faluban halt meg. Vagyis a és b azon papok csoportjába tartozik, akiket [326]-os hozzászólásomban a megoldás elején felsoroltam. De az ebbe a csoportba tartozó papok "váltják" egymást (onnan következik egy új ahol a régi meghalt) vagyis elképzelhetetlen, hogy egy harmadik c pap is átmenjen x-en (ha c is a papoknak ebbe a csoportjába tartozik), mert az ebbe a csoportba tartozó papok útvonalai pontosan lefedik a partot és nincs olyan szakasz amin két pap járt volna. A másik csoportba tartozó papok sem mehetnek át x-en, mert x-ből nem indulhatnak (hiszen onnan már a indult) és ők az induló falujukban meghalnak.

Előzmény: [338] Hajba Károly, 2004-04-21 22:15:25
[338] Hajba Károly2004-04-21 22:15:25

Kedves Csimby!

A feladat szép és elegáns befejezéséhez azt kellene kizárni, hogy semmi szín alatt nem jöhet egy faluba 2-nél több térítő. (Természetesen nem lehet ilyen ellenpéldát mutatni, de bizonyítani igen.)

HK

Előzmény: [337] Csimby, 2004-04-21 15:39:02
[337] Csimby2004-04-21 15:39:02

Tehát ha jó az amiket leírtam, akkor mindegyik faluba pontosan 2 pap érkezik (összesen). Ez egy kicsit meglepő, de most hirtelenjében nem találok ellenpéldát...

Előzmény: [336] Csimby, 2004-04-21 15:15:13
[336] Csimby2004-04-21 15:15:13

Kedves Onugor!

A térítőket két csoportra oszthatjuk: Akik beleférnek a megoldásom elején adott felsorolásba és akik nem. A két csoport közül melyiknél gondolod, hogy fenn állhat ez a problema? (én úgy gondolom, egyikben sem)

Előzmény: [335] Hajba Károly, 2004-04-21 13:49:04
[335] Hajba Károly2004-04-21 13:49:04

Kedves Csimby!

A megoldásod helyes, de elvileg nincs kizárva egy olyan fiktív eset, mikor a vizsgált térítőnk esetleg úgy érkezik egy pogány faluba, hogy ott már két térítő is járt. (Az egyik térített a másik vacsora lett :o) Ha ilyen eset létrejöhetne, akkor két falu térített maradna, s ez befolyásolhatja a végeredményt.

HK

Előzmény: [325] Csimby, 2004-04-20 23:50:43
[334] Hajba Károly2004-04-21 13:27:48

Kedves Zoli!

Gratula és fürge voltál.

HK

Előzmény: [333] SchZol, 2004-04-21 12:45:26
[333] SchZol2004-04-21 12:45:26

76.feladat megoldása:

Mivel az N-dik lépcső fokra az N-1. vagy N-2. lépcsőről juthatunk el ezért N. lépcsőfokra annyi eset van, mint az N-1. és N-2. összegére. Tehát a Fibonacci sorozat N+1. eleme adja meg, hogy az N. lépcsőre hányféleképpen tudunk feljutni. (Mert az első lépcsőre 1 másodikra 2 féleképpen stb tudunk jutni.)

Üdv, Zoli

Előzmény: [332] Hajba Károly, 2004-04-21 11:57:52
[332] Hajba Károly2004-04-21 11:57:52

76. feladat:

Hányféleképpen lehet N lépcsőfokon 1 vagy 2 lépcsőfokot lépve felmenni.

HK

[331] Hajba Károly2004-04-21 11:54:03

75. feladat:

Vegyünk 1000 darab egységkockát, mely egy része fémből, másik része fából van. Legfeljebb hány fémkockák lehet beépíteni egy belőlük kialakított nagy 10*10*10-es kockába úgy, hogy ezen nagykocka bármely két szemközti lapja között ne legyen fémes vezetőképesség. (Az egységkockák élei legömbölyítettek, tehát csak két lapszomszédos fémkocka között fut áram)?

HK

ps: A megoldásról Sirpinek van egy szép ábrája, gondolom a végén majd beilleszti, s aki ismeri mélyen hallgasson. :o)

[330] Hajba Károly2004-04-21 08:57:16

Ragozzuk tovább a 74. feladatot:

Keressünk 2-es, 3-as, stb. számrendszer alapszámaira hasonló táblázatokat. Pl a 2-esre:

... db 0

... db 1

HK

Előzmény: [329] Hajba Károly, 2004-04-21 08:53:34
[329] Hajba Károly2004-04-21 08:53:34

Kedves Zoli!

Na, így már jó. De ahogy gyermekkorunk cirkuszi bohóca mondta, mikor elvették tőle a hegedűjét:

Van másiiiiiiiiiiiiiiiiik!!! :o)

HK

Előzmény: [328] SchZol, 2004-04-21 08:45:54
[328] SchZol2004-04-21 08:45:54

Akkor talán így jó lesz:

0 1 2 3 4 5 6 7 8 9

1db 7db 3db 2db 1db 1db 1db 2db 1db 1db

Előzmény: [327] Hajba Károly, 2004-04-21 08:30:43
[327] Hajba Károly2004-04-21 08:30:43

Kedves Zoli!

Valamit félreérthettél, mivel minden szám szerepel már egyszer a táblázatban, így a kitöltendő helyre 0 már nem kerülhet, de legalább 1 vagy nagyobb számnak kell lennie.

A már beírt és a még beírandó számok figyelembevételével kell kitölteni a táblázatot. :o)

HK

Előzmény: [326] SchZol, 2004-04-21 07:47:45
[326] SchZol2004-04-21 07:47:45

74.feladat megoldása:

0 1 2 3 4 5 6 7 8 9

6db 2db 1db 0db 0db 0db 1db 0db 0db 0db

Remélem jól értettem a feladatot!

Előzmény: [324] Hajba Károly, 2004-04-20 23:31:13
[325] Csimby2004-04-20 23:50:43

Újabb próbálkozás a 3. feladat megoldására és a túrórudi másik felének megszerzésére:

Megpróbáltam átgondolni azt a megoldást amit hónapokkal ezelőtt írtam és megpróbálom kicsit összeszedettebben leírni, de a lényeg ugyanaz:

Az abc kis betűi nem a konkrét papokra és falujukra utalnak, hanem változónevek. (de x paphoz most is x falu tartozik) Legyen időben az első hittérítő: a, ő a faluból indul. Legyen az a falu, ahol meghal: b. Az a és b között terjedő partszakaszról biztosan nem indult még senki mire a pap b faluba ért (hiszen ha lettek volna innen induló papok, akkor a pap meghalt volna az a faluhoz legözelebbi ilyen indulási faluban). Tekintsük most a b papot. Ő b-ből indult. Az a falu amelyben megették legyen c. A b és c között terjedő partszakaszról még biztosan nem indult senki sem mire b pap a c faluba ért. Vizsgáljuk a c papot. Ő c-ből indult. Az a falu amelyben megették legyen d. A c és d között terjedő partszakaszról még biztosan nem indult senki sem mire c pap a d faluba ért. ... Így szépen végighaladunk óramutatóval ellentétes irányban a szigeten (mindig az a következő pap akinek az útját így végig követjük, aki onnan indult, ahol az előző meghalt). Előbb-utóbb találunk egy olyan papot, aki az a faluban halt meg, hiszen ebből a "papmegfigyelő" módszerből amit leírtam világos, hogy az ilyen módon megfigyelt papok közül semelyik kettő sem halhatott meg ugyanabban a faluban, de mivel 26 falu és 26 pap van, biztosan lesz aki a faluban halt meg. Ez még nem jelenti azt, hogy már minden pap meghalt, minden falu pogány lett. De most már olyan helyzetben vagyunk, hogy azok a faluk amelyekből eddig indultak papok, pogányok lettek (hiszen utoljára mindegyikben megettek egy papot). Időben azoktól a papoktól függetlenül akikkel már foglalkoztam, akármikor akár honnan ha indul egy pap akivel eddig még nem foglalkoztam , az rögtön meghal, hiszen azok a faluk amikből eddig nem indultak papok, hívő faluk lettek (akkor amikor ezek a faluk még pogány faluk voltak, nem indulhattak onnan, hiszen akkor ezekkel a papokkal már foglalkoztunk volna, az elején a felsorolásban). Így az összes indulási falu pogány lesz, vagyis mind a 26 falu pogány lesz.

[324] Hajba Károly2004-04-20 23:31:13

74. feladat:

Töltsétek ki helyesen azalábbi táblázatot:

[323] Kós Géza2004-04-20 11:40:35

Mi a helyzet az emberevők szigetével? Jó lenne megbeszélni a megoldást.

[322] Csimby2004-04-19 01:17:18

Kedves László!

A feladatot jól értetted, de sajnos ez:

"Ez azt jelenti, hogy van legalább egy piros mező, amely nem érhető el másik piros mezőről sem vizszintes, sem függőleges sorból, sem átlósan. Tehát ezen piros mező sorában, oszlopában és átlóiban csak kék mezők állhatnak. "

Nem igaz! Először én is itt száltam el ... Elég könnyű olyan konstrukciót mutatni, ahol noha nem bejárható egy szín, mégis az ezzel a színnel színezett négyzetek mindegyikéhez van vele egy átlóban/sorban/oszlopban másik ugyanilyen színű négyzet és így ketten (vagy esetleg még többen) alkotnak olyan elszigetelt csoportot amely nem kapcsolódik a többi, ugyanilyen színű négyzethez.

Egyenlőre tehát csak annyit tehetünk fel, hogy ha egy szín nem bejárható, akkor van legalább két erre a színre színezett négyzet amely nincs egy átlóban/oszlopban/sorban.

Előzmény: [321] lorantfy, 2004-04-19 00:18:28
[321] lorantfy2004-04-19 00:18:28

Kedves Csimbi!

Remélem jól értem a feladatot és egy adott szinű mezőre a bejáráskor többször is ráléphetünk.

71. feladat megoldása: Színezzük ki a sakktáblánkat két színnel, pl. piros és kék és tegyük fel, hogy mondjuk a piros színű mezők nem járhatók be a királynővel a kívánt módon.

Ez azt jelenti, hogy van legalább egy piros mező, amely nem érhető el másik piros mezőről sem vizszintes, sem függőleges sorból, sem átlósan. Tehát ezen piros mező sorában, oszlopában és átlóiban csak kék mezők állhatnak.

Ez viszont azt jelenti, hogy ezekből a kék mezőkből a tábla minden sorában és oszlopában álló kék mező elérhető, hiszen nincs olyan sor vagy oszlop melyben ne lenne legalább egy kék mező. ( Az ábrán üresen hagyott mezők lehetnek kékek vagy pirosak.)

Előzmény: [316] Csimby, 2004-04-16 21:46:51
[320] lorantfy2004-04-18 18:35:16

Kedves Suhanc!

Kösz az egyszerű megoldást! Az összeg tényleg mindig 260 lesz!

Én úgy csináltam, hogy legyen a sorok száma s és számozzunk 0-tól 7ig és legyen az oszlopok száma o, itt 1-től 8-ig számozunk. Ekkor a mezőre írt számok 8s+o alakban írhatók. Mivel minden oszlopból és sorból kell választanunk, minden s és o érték elő fog fordulni, így

S=(0+1+2+3+4+5+6+7)8+(1+2+3+4+5+6+7+8)=260 lesz.

Ha a mezők számozását 0-val kezdjük és a számokat 8-as számrendszerbe írjuk át, akkor mindkét helyiértéken minden számnak elő kell fordulnia. Igy a számok összege:

(0+1+2+3+4+5+6+7)(8+1)=252

De minden számot meg kell növelnünk 1-el. Mivel 8 számot választottunk ki, az összeg: 252+8=260.

nxn-es tábla esetén n alapú számrendszerbe írhatjuk át...

Előzmény: [318] Suhanc, 2004-04-17 22:12:21
[319] Hajba Károly2004-04-18 14:03:32

Kedves László és Suhanc!

Ismerek egy ehhez hasonló kis feladatot én is. Íme a 73. feladat:

Adott egy nagy táblázat, számokkal kitöltve. Vesszük minden sorból a legkisebbet, ezek közül a legnagyobbikat megjelöljük pirossal. Vesszük minden oszlopból a legnagyobbat, ezek legkisebbikét megjelöljük kékkel. Mit mondhatunk a két megjelölt szám viszonyáról?

HK

[318] Suhanc2004-04-17 22:12:21

Kedves László!

Azt hiszem, van megoldásom a feladatodra... remélem, nem kapkodtam el...

Bárhogyan is választjuk ki a 8 számot /a feladat feltételeinek megfelelően/, mindig azonos lesz a számok összege. Ez az összeg 260.

Jelöljük ugyanis X-szel, ha egy számot kiválasztottunk... Helyezzük el az X-eket, az első oszlopban. Innen az összes kiválasztás elértő, ha a sorokban lévő X-eket /minden sorba 1 van/ 0;1;2;...6;7 mezővel jobbra toltuk, hisz ekkor minden oszlopban pontosan 1 X-lesz. Azaz, minden lehetséges kiválasztásnál az számok összeg kiszámolható úgy, hogy az (1+9+17+25+33+41+49+57)-hez még (0+1+2+3+4+5+6+7)-et adunk. Így tehát a számok összege valóban minden esetben 260 lesz.

[317] lorantfy2004-04-17 16:46:46

72. feladat: Számozzuk meg a 8x8-as sakktábbla mezőit balról jobbra, fenntről lefelé.

Kiválasztunk 8 számot úgy, hogy minden sorból és minden oszlopból csak egy számot választhatunk.

Mennyi a 8 szám összegének minimuma és maximuma?

[316] Csimby2004-04-16 21:46:51

71.feladat Színezzük a sakk tábla mezőit tetszőleges módon két különböző színnel. Bizonyítsuk be, hogy az egyik színre színezett mezők bejárhatók egy királynővel (átlósan, vízszintesen és függőlegesen tud mozogni), úgy, hogy a királynő áthaladhat a másik színre színezett mezők felett, de azokon nem állhat meg! Egy mezőn többször is áthaladhat.

[315] lorantfy2004-04-15 22:24:35

Kedves NádorP!

A b) rész 2. felében Neked van igazad. Én elkapkodtam. Nem elég a sort és az oszlopot kiválasztani... A bástyás példa szemléletesen mutatja, hogy itt még 72 megoldás van, tehát a páratlan esetben összesen 88.

Előzmény: [313] nadorp, 2004-04-15 14:42:46
[314] nadorp2004-04-15 14:45:01

Kedves László !

Most láttam, hogy Te is válaszoltál. A páratlan esetben különbözünk, majd én átgondolom a megoldást.

N.P.

[313] nadorp2004-04-15 14:42:46

Sziasztok !

Egyelőre csak a konkrét esettel foglalkoztam, a szimmetrikus,elforgatott megoldásokat különbözőnek tekintettem.

a) Legyen minden sorban és oszlopban páros sok korong. Ez csak úgy lehet, ha 2 sorban 4 korong és 1 sorban 2 van vagy 1 sorban 4 korong és háromban kettő. Az első eset nem fordulhat elő, mert ekkor két oszlopban is három korong lenne.Ezért marad a második lehetőség, de ekkor ugyanígy egy oszlopban 4 korong és 3 oszlopban 2 korong van. Válasszunk ki egy sort és egy oszlopot, ahol 4 korong lesz. Ezt megtehetjük 16-féleképpen.Tekintsünk egy, a kiválasztott sortól különböző sort. Ide 3 helyre tehetünk korongot.Ezek után még egy, az előzőektől különböző sort tekintve már csak két lehetőség közül választhatunk.Így az összes esetek száma 16.3.2=96.

b)Legyen minden sorban és oszlopban páratlan sok korong. Ez csak úgy lehet, ha 3 sorban és oszlopban 3 korong van, és egy sorban és egy oszlopban egy korong van.Válasszunk ki egy sort és egy oszlopot, ahol 1 korong lesz. Két eset lehetséges. Ha a kiválasztott sorban és oszlopban összesen csak 1 korong van, akkor a maradék összes, nem kizárt 9 mezőre kerül korong. Ez összesen 16 eset.Ha a kiválasztott sorban és oszlopban összesen 2 korong van, akkor könnyen látható,hogy a két korong által meghatározott sorok és oszlopok másik két kereszteződésében nem lehet korong.Így 8 mezőre kell 8 korongot elhelyezni, azaz a kiválasztott 2 korong egyértelműen meghatározza a többi helyzetét. Az esetek száma annyi, ahányféleképpen el lehet helyezni két bástyát egy 4x4 sakktáblán úgy, hogy ne üssék egymást.Egy bástyához 9-féleképpen lehet másikat feltenni, ez összesen 9.16=144 eset, de mindegyiket kétszer számoltuk. Azt kaptuk tehát, hogy páratlan esetek száma 16+72=88.

Remélem nem bonyolítottam ( és nem számoltam) el.

N.P.

Előzmény: [310] lorantfy, 2004-04-15 12:54:58
[312] lorantfy2004-04-15 14:41:17

Kedves Károly!

Ügyes ki példa ez, csak kevés az időm.

Megoldások száma a 70. feladatnál:

a) esetben 10=4+2+2+2. Nézzük először a 4-es sorok és oszlopok helyzetét. Bármelyik sor bármelyik oszloppal párosítható. Ez 16 lehetőséget jelent, de minden elrendezésnél még 3 korong helyét variálhatjuk. A megmaradó 3x3-as négyzetrácsban kell elhelyeznünk a 3 korongot, úgy, hogy minden sorban és oszlopban csak 1 lehet. Ez 6 féleképpen lehetséges. Így a megoldások száma 6x16=96.

b) esetben, csak a 10=3+3+3+1 felbontás lehetséges, így azokat a megoldásokat könnyen összeszámolhatjuk, ahol a sorban és oszlopban egyedülálló ugyanaz a korong, ami bármelyik mezőben állhat, ez 16 megoldást jelent.

De sajnos vannak olyan esetek is mikor a sorban egyedülálló koron egy oszlopban álló 3-as része és az oszlopban egyedül alló egy sorban álló 3-as része. Ezek az egyedülálló korongok bármelyik sor és oszlop párban állhatnak, ha jól gondolom akkor ez is 16 eset. Összesen 32 megoldás.

Azért jó lenne, ha utánnagondolnátok, mert ez nagyon kapkodva született! Vannak asszimmetrikus megoldások.

Előzmény: [311] Hajba Károly, 2004-04-15 13:05:26
[311] Hajba Károly2004-04-15 13:05:26

Kedves László!

Fürge vagy és gondolatolvasó. Ti. ezek lettek volna a következő kérdéseim. Továbbá az, hogy létezik-e aszimmetrikus megoldás valamely esetben?

HK

Előzmény: [310] lorantfy, 2004-04-15 12:54:58
[310] lorantfy2004-04-15 12:54:58

70. feladat megoldása: Egyenlőre csak beraktam a korongokat a négyzetrácsba. Most még ki kéne találni hány megoldás van! Aztán általánosítani nxn-es rácsra és k<n2 korongra. Mikor oldható meg egyáltalán?

Előzmény: [309] Hajba Károly, 2004-04-15 07:47:30
[309] Hajba Károly2004-04-15 07:47:30

70. feladat

Adott egy fehér 4*4-es négyzetrács és 10 db fekete korong. Helyezzük el a korongokat egy-egy négyzetre az alábbi feltételek szerint:

a) minden sorban és oszlopban páros korong legyen.

b) minden sorban és oszlopban páratlan korong legyen.

HK

[308] Hajba Károly2004-04-14 01:37:05

Kedves Sirpi és Csimby!

Köszi a pontosítást, s mivel tetszett a feladat, elmélázatam az általánosításán is. Íme az általános megoldóképlet a maximumértékre, ahol N pozitív egész:

f(N)=3^{\Big[\frac{N-2}{3}\Big]}*\Big(2+3*\Big\{\frac{N-2}{3}\Big\}\Big)

HK

Előzmény: [307] Sirpi, 2004-04-12 15:16:43
[307] Sirpi2004-04-12 15:16:43

Valóban a 3668 a maximum, nézzük is, miért.

Tegyük fel, hogy felosztottuk a 2004-et néhány pozitív egész szorzatára.

Ha van a számok közt 1-es, akkor egy másik k számmal összevonva 1.k<1+k miatt növeljük a szorzatot.

Ha van olyan k szám köztük, ami legalább 4, akkor nem rontunk, ha k-t kicseréljük 2.(k-2)-re, sőt, k\neq4 esetén jav³tunk is.

Így feltehető, hogy csupa 2-es és 3-as tényezőkből áll a szorzat. De mivel 2.2.2<3.3 és 2+2+2=3+3, így legfeljebb 2 db. 2-es lehet az optimális szorzatban. De a 2004 osztható 6-tal, ami miatt a 2-esek száma 3-mal osztható kell legyen. De 0 és 2 közt csak a 0 osztható 3-mal, így az optimális szorzatban 0 db 2-es és 668 db. 3-as kell legyen.

Nem láttam be, de triviális, hogy valóban van maximum...

S

Előzmény: [306] Hajba Károly, 2004-04-12 01:45:34
[306] Hajba Károly2004-04-12 01:45:34

Megoldás a 69.feladatra:

Kezdjük el a 2004-et az n\inN>2 számokkal elosztani és utána képezni az S=\bigg(\frac{2004}{n}\bigg)^n-t. Az Smax-ot az n\approx\frac{2004}{e} helyen kapjuk, így S_{max} \approx e^\frac{2004}{e}.

Ültessük most ezt át az egész számokra, azaz a 2004-t osszuk fel 2-es és/vagy 3-as számok összegére. (Várhatóan 738 darabra), majd ezeket összeszorozni. Erre közelítést az alábbi egyenletrendszer megoldásával tehetünk:

2*n+3*m=2004

n+m=738

Innen az S=2210*3528 szám adódik, de érdekes módon nem ez adja a jó megoldást, hanem az S=3668.

HK

Ui: Remélem, jó az elképzelésem, s egyébként kellemes locsolkodást mindenkinek :o)

Előzmény: [305] Csimby, 2004-04-11 21:48:22
[305] Csimby2004-04-11 21:48:22

69.feladat Számítsuk ki olyan pozitív egész számok szorzatának maximumát, amelyek összege 2004.

[304] Sirpi2004-04-09 10:05:59

Ezt a feladatot nem ismertem, viszont némi agyalás után rájöttem, hogy a feladat nem más, mint egy többdimenziós Mérgezett csoki játék. Ez alapján az a válasz, hogy ha n\neq1, akkor az első játékosnak van nyerő stratégiája (viszont ezt a stratégiát nem lehet megadni, általánosan csupán egzisztenciabizonyítás adható).

Ezután a bevezető után nem is lőnem le (teljesen :-) ) a megoldást, de leírom, hogy mi is az a 2 dimenziós Mérgezett csoki játék:

Van egy n×m méretű csokink, melynek a bal felső kockája mérgezett, valamint egy L alakú késünk, mellyel a csoki rácsai mentén vághatunk. A kést csak úgy forgathatjuk, hogy a levágandó rész jobb alulra essen. A 2 játékos felváltva vág a csokiból, és amit levágnak, azt meg is eszik. Az veszít, akinek a mérgezett kiskocka marad.

Innen már csak azt kell kitalálni, hogy a 2 feladatnak mi köze van egymáshoz, és miért nyer (majdnem) mindig az A játékos...

Remélem, sikerült mindenkit kellően összezavarnom :-)

Könnyű pótfeladat:

a) adjuk meg a nyerő stratégiát, ha a csoki 2×n-es

b) ha n×n-es

Sirpi

Előzmény: [303] Csimby, 2004-04-04 23:25:47
[303] Csimby2004-04-04 23:25:47

Talán van aki nemismeri:

68. feladat A és B a következő játékot játszák: Kiindulnak egy adott N számból és felváltva mondják N-nek egy-egy osztóját, úgy hogy senki sem mondhat olyan osztót ami az eddig elhangzott osztók egyikének osztója. Az a játékos veszít aki már csak N-et tudja mondani. Mikor, kinek van nyerő stratégiája?

[302] Gubbubu2004-03-27 09:33:59

300=12+2.122, azaz 300=\sum_{i=1}^{2}i\cdot{}12^i, vagyis az S_n=\sum_{i=1}^ni\cdot{}12^i sorozat második tagja.

Előzmény: [301] Gubbubu, 2004-03-27 09:23:41
[301] Gubbubu2004-03-27 09:23:41

300 az első 9 darab prímszám összegének háromszorosa. (ez már nem olyan szép tulajdonság, de talán kihozható belőle valami)

Előzmény: [300] Gubbubu, 2004-03-27 09:17:26
[300] Gubbubu2004-03-27 09:17:26

300 a huszonnegyedik háromszögszám.

Előzmény: [299] Csimby, 2004-03-26 22:12:12
[299] Csimby2004-03-26 22:12:12

Én is ezt a megoldást ismerem, amit Nadorp és Onogur összehozott, de a másik is érdekes. Szerintem is nagyon szép.

Kicsit feleslegesnek tartottam ennyi miatt hozzászólást írni ezért arra gondoltam megnézem a What's Special About This Number? lapot, mit ír a 300-ról (mivel ez a 300. hozzászólás, ha valaki meg nem előz) és ezt találtam: "300 is the largest possible score in bowling", fantasztikus. Egyébként vannak "tényleg" érdekes(ebb) dolgok is ezen a honlapon.

[298] nadorp2004-03-26 09:18:25

Szép!

Előzmény: [297] Sirpi, 2004-03-26 08:57:09
[297] Sirpi2004-03-26 08:57:09

Na, akkor egy próba:

Tudjuk, hogy 0<a<b<c, és használjuk Onogur szemfüles átalakítását:

f(x)=(a-x)(b-x)c+a(b-x)(c-x)+(a-x)b(c-x)

Ekkor

f(a)=a(b-a)(c-a)>0

f(b)=(a-b)b(c-b)<0

f(c)=(a-c)(b-c)c>0

Az előjelváltások és f folytonossága miatt muszáj lenni gyöknek mind az (a,b), mind a (b,c) intervallumban.

S

Előzmény: [294] Hajba Károly, 2004-03-26 00:57:49
[296] nadorp2004-03-26 08:54:52

Sziasztok !

Adok egy megoldást a 67. feladatra. A bizonyítás nem elemi, de a feladat alapötlete szerintem innen származik.

Tekintsük a p(x)=abcx3-(ab+ac+bc)x2+(a+b+c)x-1 polinomot. Könnyen látható,hogy p(x)=-x^3(\frac1x-a)(\frac1x-b)(\frac1x-c) miatt a p(x) gyökei az \frac1c<\frac1b<\frac1a számok. A polinomnak három valós gyöke van, ezért létezik egy lokális maximuma és egy lokális minimuma. Ezeket a szélsőértékeket a polinom az (\frac1c,\frac1b) illetve a (\frac1b,\frac1a) intervallumokon veszi fel. A szélsőértékek helyeit a p'(x)=0 egyenlet gyökei adják.Viszont a

p'(x)=3abcx2-2(ab+ac+bc)x+(a+b+c)=0 egyenlet gyökei nyilván a

(a+b+c)x2-2(ab+ac+bc)x+3abc=0 egyenlet gyökeinek a reciprokai, ezért ennek az egyenletnek a gyökei az (a,b) illetve (b,c) intervallumokba esnek.

[295] Hajba Károly2004-03-26 01:00:16

Elütöttem a feladat sorszámát! Természetesn a 67. feladatra adtam részmegoldást. :o)

Előzmény: [294] Hajba Károly, 2004-03-26 00:57:49
[294] Hajba Károly2004-03-26 00:57:49

Kedves Csimby!

A 65. feladatnál az alábbi részeredményre jutottam:

A (a+b+c)x2-2(ab+bc+ac)x+3abc=0 egyenletet átrendezve az következő egyenletet kapjuk:

(a-x)(b-x)c+a(b-x)(c-x)+(a-x)b(c-x)=0

a) Ha x<a akkor az összeg mindhárom tagja pozitív lesz, míg ha x>c akkor mindhárom negatív lesz, s ez ellentmondás. Tehát a<x<c.

b) Ha rendre x= a, b, c, akkor az összeg két-két tagja rendre zérus, míg a harmadik nem. Így ez is ellentmondás. Tehát x\ne(a,b,c)

c) Ha a<x<b vagy b<x<c, akkor az összeg 3. tagja mindig negatív, a másik két tag előjele ellentétes, így mindkét tartományban lehetséges gyök; de eddig még nem leltem meg a megoldást, mellyel bizonyíthatnám, hogy két külön tartományba is kell kerülniük. :o(

HK

Előzmény: [289] Csimby, 2004-03-24 00:40:29
[293] Sirpi2004-03-25 15:10:41

Megjegyzés a 65. feladathoz:

A kitűzésnél 0<x<\pi/4 volt, de az állítás igaz (és a bizonyítás is megy) 0<x<\pi/2-re. Sőt több is igaz:

Beláttuk, hogy ha x hegyesszög, akkor x legfeljebb a sin x és tg x számtani közepe lehet. Ez viszont igaz számtani helyett harmonikus középre is, amivel élesebb becslést kapunk:

\frac{2}{\frac{1}{\sin x}+\frac{1}{\tg x}}=\frac{2 \sin x}{1+\cos x}=\frac{4 \sin \frac x2 \cos \frac x2}{2cos^2 \frac x2}=2\tg \frac x2 \geq 2 \cdot \frac x2 = x

S

Előzmény: [292] nadorp, 2004-03-25 13:34:34
[292] nadorp2004-03-25 13:34:34

Megoldás a 65. feladatra.

\frac{\sin{x}+\tg{x}}2=\frac{\sin{x}}2\cdot\frac{1+\cos{x}}{\cos{x}}=\sin\frac{x}2\cos\frac{x}2\cdot\frac{1+\cos{x}}{\cos{x}}=\tg\frac{x}2\cos^2\frac{x}2\cdot\frac{1+\cos{x}}{\cos{x}}=

=\tg\frac{x}2\cdot\frac{1+\cos{x}}2\cdot\frac{1+\cos{x}}{\cos{x}}=2\tg\frac{x}2\cdot\frac{(1+\cos{x})^2}{4\cos{x}}\ge2\tg\frac{x}2

Az ábra szerint, ha a kör sugara 1,akkor T_{OAB}=\frac{x}4 és T_{OAC}=\frac{\tg\frac{x}2}2 és látható, hogy TOAB\leqTOAC, ezért

2\tg\frac{x}2\ge{x}

Előzmény: [289] Csimby, 2004-03-24 00:40:29
[291] lorantfy2004-03-24 13:26:07

Kedves Zoltán!

Kösz a figyelmeztetést. Neked jobb a memóriád, én nem emlékeztem rá. Ráadásul a megoldásban utalnak az általános megoldhatóság feltételére is. Azért remélem lesz olyan, aki ettől függetlenül megcsinálja.

Előzmény: [290] SchZol, 2004-03-24 12:32:51
[290] SchZol2004-03-24 12:32:51

Kedves László!

A 64.feladat 2001. novemberében ki volt tűzve a Kömalban (P.3467.), annyi eltéréssel, hogy ott 6 óra volt az út oda-vissza.

Üdv, Zoli

Előzmény: [288] lorantfy, 2004-03-23 22:56:49
[289] Csimby2004-03-24 00:40:29

65.feladat Bizonyítsuk be, hogy ha 0<x<\Pi/4, akkor x<(tgx + sinx)/2.

66.feladat Bizonyítsuk be, hogy tg 1°, sin 1°, cos 1° irracionális.

67.feladat (a+b+c)x2-2(ab+bc+ac)x+3abc=0 és 0<a<b<c Bizonyítsuk be, hogy az egyenlet egyik gyöke a és b közé a másik pedig b és c közé esik.

A feladatok a Nemzetközi Magyar Matematikai Versenyen voltak kitűzve, úgyhogy aki volt az ismeri a megoldásokat aki nem, annak meg jó szórakozást.

[288] lorantfy2004-03-23 22:56:49

Kedves Károly és Fórumosok!

Éppen ideje volt már „földobni” ezt a témát! Ezt a feladatot én is hallottam már többféle változatban, cipókkal, tojásrántottával, de fahasábokkal és spórral még nem. Bennem meleg elmékeket kelt az utóbbi, de sokan szerintem már azt sem tudják mi az. ( Spór = spórhelt = sparhert = takaréktűzhely )

64. feladat: Valaki dombos úton kerékpárral ment A helyről B-be majd ugyanott vissza. Vizszintes úton v = 16 km/h, lefelé u = 24 km/h, felfelé pedig w = 12 km/h sebességgel haladt. Oda-vissza összesen 3 órát kerékpározott. Mekkora az AB távolság?

Akinek ez nagyon könnyű lenne:

64.b feladat: Milyen 60 km/h > u > v > w egész számokra van a feladatnak egyértelmű megoldása?

Előzmény: [287] Hajba Károly, 2004-03-22 15:19:25
[287] Hajba Károly2004-03-22 15:19:25

Üdv Mindenki!

Felhozandó a Téma bedobok egy ide illő és egyszerű, akár az "Ujjgyakorlatok"-ba is illő 63. feladatot:

Három barátnő főzéshez készül, az egyik 5 db fát, a másik 3 db fát hozzott a spórba és így mindhármójuk megfőzött. A harmadik, mivel nem volt tüzifája, 8 forinttal járult hozzá a tüzifa költségekhez. A másik két barátnő milyen arányban osztozik igazságosan a pénzen?

HK

[286] Csimby2004-03-05 13:17:08

Kedves Gyuri!

Megköszönném!

[285] Gyuri2004-03-05 12:16:51

Kedves Csimby!

A 60. feladathoz irt kerdesedre a valasz: Lehet jobbat talalni, megpedig 21/36 a legnagyobb nyeresi esely Andris szamara. Hogyan lehet bizonyitani? Most nincs nalam, de egy rovidke C progival vegigneztem a lehetosegeket. Ha erdekel, elkuldhetem emailben.

Udv: Gyuri

Előzmény: [275] Csimby, 2004-02-26 21:13:06
[284] pragmaP2004-03-03 19:46:57

Kedves László!

Köszönöm, hogy felhívtad a figyelmem az elegánsabb megoldásra. Én a \sqrt5 és a \sqrt10 arányából jöttem rá, hogy egyenlőszárú derékszögű háromszöget kell valahol találnom.

[283] lorantfy2004-03-02 20:11:49

Kedves Tamás!

Örülök, hogy beírtad a megoldást – én nem mondtam, hogy nem kell megoldani, csak, hogy emlékeztet egy másik példára. Különösen a jó ábrákat imádom – és ez is az!

Ha jól megnézed, kiderül, hogy a szög megállapításához nem szükséges kiszámolni az átfogókat, elegendő az 1-2 befogójú derékszügű \Delta-ek egybevágóságára hivatkozni. Ezért is szeretik ezt a példát és variációit a 7. osztályos versenyfeladatokba berakni.

Előzmény: [282] pragmaP, 2004-03-02 18:13:30
[282] pragmaP2004-03-02 18:13:30

62. feladat megoldása

Sajnálom, hogy már volt, de azért, ha már lerajzoltam, elküldöm.

A Pithagorasz-tételből ED=\sqrt5 és EC=\sqrt10=\sqrt2 * \sqrt5. Tükrözzük AED háromszöget E pontra! Így ED'=\sqrt5. Ha be tudom bizonyítani, hogy D'C is \sqrt5, akkor ED'C egy egyenlőszárú derékszögű háromszög, ezért 45-°osak az alapon fekvő szögei. Ebből \alpha=135°.

A fentinek bizonyítása: BP=1, ha a D'P-t AB-vel párhuzamosan húztam. EA'=2, így A'B=1, ezért D'C=\sqrt5

Előzmény: [280] lorantfy, 2004-03-02 11:33:04
[281] nadorp2004-03-02 12:10:54

Kedves László !

Teljesen igazad van, sajnos nem vettem észre, hogy ez a példa már szerepelt ( egy kicsit más köntösben). Bocsi

N.P.

Előzmény: [280] lorantfy, 2004-03-02 11:33:04
[280] lorantfy2004-03-02 11:33:04

Kedves NadorP és Fórumosok!

Úgy látom ez a feladat az "Ujjgyak" 27. feladatának [86] egy változata. Persze csak az nézze meg aki nem tudja megoldani!

Előzmény: [279] nadorp, 2004-03-02 08:26:12
[279] nadorp2004-03-02 08:26:12

Kedves László !

Gratula,nagyon elegáns a megoldás. Hetedikes fiam hozta a következő példát.

62.feladat: Az ABCD téglalapban AB=5,BC=1. Az AB oldal olyan belső pontja E, melyre AE:EB=2:3. Határozzuk meg szögfüggvények használata nélkül a CED szöget.

[278] lorantfy2004-02-28 15:02:24

61. feladat megoldása: A pozitív egészekből álló sorozat: a1,a2,a3,...am,...an,...am+n-1

Nevezzük az i db egymásutáni tagból álló számsort „i-lánc”-nak. Nekünk m és n láncokat kell összegeznünk. Legyen m<n. Írjuk az összegzendő láncokat 1-el eltolva egymás alá, külön az m és külön az n-láncokat. Így azonos tagok kerülnek egymás alá.

Látható, hogy m-láncból (m+n-1)-m+1= n db van, hasonlóan n-láncból m db.

Az Sn összegben m sor van tehát az összeadott azonos tagok együtthatói 1-től m-ig növekednek a1-től am-ig. Ezután an-ig minden együttható m, majd egyesével csökkennek az együtthatók, am+n-1 együtthatója 1 lesz.

Az Sm összegben n(>m) sor van, de az m-láncok hossza m, így itt is csak m db azonos tag kerülhet egymás alá, hiszen minden m-lánc 1-el el van tolva és m számú eltolás után az első lánc „elfogy”. Így az egymás alá kerülő azonos tagokat összeadva az együtthatók pontosan úgy alakulnak mint az Sn összegben.

Tehát Sn=Sm.

Előzmény: [277] nadorp, 2004-02-27 11:58:44
[277] nadorp2004-02-27 11:58:44

A Nehezebb matamatikai problémák között Sirpi [75] kitűzött egy példát. Ennek egyik "mellékterméke" az alábbi állítás.

61.feladat: Legyenek m,n tetszőleges pozitív egészek és tekintsünk m+n-1 darab tetszőleges valós számot. Képezzük az összes lehetséges módon n darab szomszédos szám összegét. Jelölje ezen összegek összegét Sn. Definiáljuk hasonlóképpen Sm-et is. Bizonyítsuk be, hogy Sn=Sm

[276] Hajba Károly2004-02-26 21:57:29

Kedves László!

Íme az én verzióm majdnem a Te stílusodban. (Először nem jöttem rá a szines trükködre, de aztán gyakoroltam inkább a TeX-et :o)

K3-K1 K1 K1-K2 K2-K1 K2 K2-K3 K3-K2 K3 K1-K3
6 18 6 5 17 6 4 15 5
3 12 4 5 16 6 4 14 5
3 11 4 2 9 3 4 13 5
3 10 4 2 8 3 2 7 2
1 4 1 2 5 1 2 6 2
1 3 1 0 2 1 0 1 0
17 58 20 16 57 20 16 56 19

HK

Előzmény: [274] lorantfy, 2004-02-26 07:45:45
[275] Csimby2004-02-26 21:13:06

Onogur és Lorantfy megoldásában is 19/36 valószínűséggel nyer Andris. Nem lehet jobbat találni? ill. hogyan lehetne bebizonyítani, hogy nem lehet?

[274] lorantfy2004-02-26 07:45:45

Egy lehetséges változat a számok felírására:

Előzmény: [273] Hajba Károly, 2004-02-25 13:46:57
[273] Hajba Károly2004-02-25 13:46:57

Nekem is van már egy megoldásom, s az alábbi végeredményt adja az összevetésnél:

A:B=20:16; B:C=20:16; C:A=19:17

HK

Előzmény: [272] lorantfy, 2004-02-25 13:18:37
[272] lorantfy2004-02-25 13:18:37

Kedves Fórumosok!

Bejött Csimbi ötlete: el lehet helyezni a számokat úgy, hogy a kockák a "körbeverjék" egymást! Nekem már megvan! Variáljatok Ti is!

Előzmény: [271] Hajba Károly, 2004-02-25 12:55:20
[271] Hajba Károly2004-02-25 12:55:20

Valóban, (görög volt a falóban :o) ha Gyuri adta fel, ahhoz ez túl trivi, irány tovább gondolkodni.

HK

Előzmény: [265] Sirpi, 2004-02-25 10:47:37
[270] Sirpi2004-02-25 11:29:02

Nyomon vagytok... :-)

Előzmény: [268] Csimby, 2004-02-25 11:00:28
[269] lorantfy2004-02-25 11:20:16

Kedves Csimbi és Fórumosok!

Valóban túl egyszerűnek tűnik az egyenlő valószinüségű megoldás, figyelembe véve, hogy a példát Gyuri adta fel és a "kivégzés" emléke még bennünk él!

Nekem elsőre úgy tűnik, mintha az "egyik kocka jobb mint a másik" reláció tranzitív lenne. De mégis jónak találom az ötletedet! Vizsgáljuk meg!

Előzmény: [268] Csimby, 2004-02-25 11:00:28
[268] Csimby2004-02-25 11:00:28

Andris mindenképpen eltudja érni, hogy egyenlők legyenek az esélyek, ha az egyik kockára 1,2,3,16,17,18-at ír. Ha Béla nem, akkor ő kiválasztja ezt a kockát -> 1/2 valószínűséggel nyer, függetlenül a másik két kockától.

Tehát ha valakinek van nyerő stratégiája, az Andris. Olyan elosztást kéne találni, hogy az A kocka jobb a B-nél, B a C-nél, C az A-nál -> Béla akármit választ, Andris tud jobbat.

[267] lorantfy2004-02-25 10:52:45

Kedves Károly és Fórumosok!

Abból, hogy a számok összege minden kockán 57 én még nem látom tisztán, hogy egyenlő lenne a nyerési esély és van ilyen elosztás?

Én igy gondolom: András nyilván igyekszik úgy elosztani a számokat, hogy legalább két kockával egyenlő legyen a nyerési esély és a harmadikkal ezeknél kisebb. Ha ez lehetséges, akkor egyenlő valószinüséggel nyerhetnek. (A 3. kocka azért nem lényeges, mert Béla kiválasztja az egyik jobb kockát, András meg a másikat)

A lenti táblázatba beírtam a számok elosztásását. A szélső oszlopokba pedig, hogy az adott szám hány párban nyerő. A 36 lehetőségből mindkét kocka 18-18 szor nyer. Tehát mindeny, hogy kinek a helyében játszunk

Előzmény: [264] Hajba Károly, 2004-02-24 21:05:58
[266] Sirpi2004-02-25 10:52:29

Az előző példám nagyon sarkított, és természetesen nem fér bele a feladat kereteibe (1-18-ig terjedő, különböző számok), de rávilágít valamennyire a dologra...

S

Előzmény: [265] Sirpi, 2004-02-25 10:47:37
[265] Sirpi2004-02-25 10:47:37

Sajnos ez az érvelés hibás... Tegyük fel, hogy van két kockánk, egyiken 0, 0, 0, 0, 0, 100000 számok vannak, a másikon 1,1,1,1,1,1 számok. Melyik kocka a jobb? A másodikkal 5/6 eséllyel nyerek az első ellen, pedig az összeg (átlag) kisebb rajta.

S

(Imserem a megoldást, de csöndben maradok...)

Előzmény: [264] Hajba Károly, 2004-02-24 21:05:58
[264] Hajba Károly2004-02-24 21:05:58

60. feladathoz:

Ha András úgy ossza ki a számokat a dobókockák között, hogy az egyik kocka oldalösszege nagyobb, mint a többin, akkor Béla ezt választva hosszútávon elönyt élvezhetne, mivel magasabb átlagpontot érne el vele. Amennyiben mindhárom kockán egyenletesen vannak elosztva a számok, azaz egy-egy kockán található számok összege 57-57, teljesen mindegy a választott kockán lévő számok értéke, hosszútávon kiegyenlítődik a játék. A teljesen egyenletes eloszlás miatt úgy kell a kiosztást elvégezni, hogy egy-egy kocka két-két ellentétes oldalán található számok összege 19 legyen.

Ezzel a taktikával mindegy, hogy ki kezd és véletlenszerű a különbség.

HK

Előzmény: [263] Gyuri, 2004-02-23 15:19:09
[263] Gyuri2004-02-23 15:19:09

Kedves Fórumosok!

Íme egy újabb feladat:

60. feladat: András és Béla játszák a következő játékot: András az 1,2,...,18 számokat felírja 3 db, kezdetben számozatlan dobókocka lapjaira, minden lapra pontosan egy számot. Ezután Béla választ egy kockát e három közül, persze a választás előtt kedvére tanulmányozhatja őket. András a megmaradt két kocka közül választ, majd rátérnek a játék fő részére. Dobnak mindketten a saját kockájukkal, és a nagyobb számot dobó elnyer egy forintot a másiktól. Így dobálgatnak a kockáikkal, minden lépésben a sajátjukkal. Kérdés: kinek a helyében érdemes játszani? mennyire éri meg?

Üdv: Gyuri

[262] Gubbubu2004-02-21 22:28:10

Bocs, a 4 lemaradt. A TEX ördöge.

Előzmény: [261] lorantfy, 2004-02-21 11:47:00
[261] lorantfy2004-02-21 11:47:00

Kedves Gubbubu!

Bocs, hogy beleturkálok a feladatodba, de így lesz megoldás:

59.b feladat:

log_2{\frac{cos^4{xy}+1}{cos^2{xy}}}=\frac{2}{y^2+4y+6}

Előzmény: [260] Gubbubu, 2004-02-19 20:16:44
[260] Gubbubu2004-02-19 20:16:44

Kedves Fórum!

A következő feladatot azoknak ajánlom, akik az itteni versenyszintű feladatokat túl nehéznek, de a "darálós" matematikafeladatokat (pl. zöld könyv) túl könnyűnek érzik.

59. fa.: Oldjuk meg a

log_2{\frac{cos^4{xy}+1}{cos^2{xy}}}=\frac{2}{y^2+y+6}

egyenletet, (x,y)\inR2

[259] Lóczi Lajos2004-02-19 04:32:18

Kedves Onogur!

Még utoljára hadd reagáljak én is a kérdésre. Persze, én is hasonlóra gondoltam a "képlet" szó hallatán---arra a néhány "önkényesen" kijelölt függvényre (pl. szinusz, logaritmus, négyzetgyök, stb.), melyeket "legtöbbször" használunk, illetve ilyenekből (véges sok lépésben ?) a függvényműveletekkel (pl. alapműveletek, kompozíció, inverz, stb.) készíthető függvényekre.

A "véges lépésben kifejezhetőség" kérdését és a másodfokú egyenlet megoldóképletét nézhetjük azonban a következő nézőpontból is: pl. már az x2=2 (x>0) egyenlet megoldása, azaz \sqrt{2} sem fejezhető ki racionális számokkal és véges sok alapművelettel; természetesen a határérték felhasználásával (és végtelen sok racionális szám felhasználásával) már kifejezhető. De ugyanígy van a 10x=2 egyenlet valós megoldásával is: a log102 kifejezést sem lehet a határérték fogalmának mellőzésével véges sok racionális számból megkonstruálni. (Limesz segítségével persze könnyen definiálható pl. a logaritmus hatványsora és így a log102 szám is.) Ugyanez a helyzet tehát minden irracionális számmal, hiszen irracionális számokat "konstruálni" csak már valami meglévő "anyagból", pl. a racionális számokból lehet.

Már az is szerencsének számít szerintem, hogy egy "véletlenszerűen" felírt nemlineáris egyenletnek egyáltalán kifejezhető a megoldása a "megszokott", elemi függvények segítségével (és határértékképzéssel).

Ilyen típusú tételekkel, kérdésfelvetéssel egyébként a primitívfüggvény-keresés (azaz határozatlan integrálás) elméletében foglalkoznak, meg lehet kérdezni pl., hogy egy adott függvénynek a (bizonyíthatóan létező) primitív függvénye egy adott függvényosztályban van-e: pl. jól ismert, hogy az x\mapstoe-x2 függvény primitív függvénye "nem elemi" függvény, azaz a "szokásos" képletekkel nem "fejezhető ki". Ennek ellenére egyszerű hatványsorral (ismét határértékképzés!) minden további nélkül előállítható a primitív függvénye. (És ha tetszik, be is vezethetünk erre egy új nevet, ahogyan ezt szokták is (valójában a függvény konstansszorosát nevezik el): legyen ez az ún. hibafüggvény, és jelöljük az erf(x) jellel. Ezzel aztán ugyanúgy számolhatunk, mint pl. a log(x) függvénnyel...tehát a történetnek sosem lehet vége.)

Előzmény: [258] Hajba Károly, 2004-02-19 00:42:09
[258] Hajba Károly2004-02-19 00:42:09

Kedves Lajos!

A "pontos érték" alatt én is olyasvalamire gondoltam, mint gubbubu; vagy például képlet alatt olyanra, mint a másodfokú megoldóképlet, tehát véges lépésben kifejezhető érték. Feltehetően nem pontosan fogalmaztunk.

De azt javaslom, hogy ezirányú pontosításokat ne folytassuk, mivel ilyen - fent vázolt módon kifejezhető formában - feltehetően nem létezik, másrészről a feladatot természetesen megoldotnak tekintem én is. :o)

HK

Előzmény: [256] Lóczi Lajos, 2004-02-18 02:53:55
[257] lorantfy2004-02-18 09:18:36

Kedves Károly!

Kösz a megoldást! Megmondom őszintén, én nem foglalkoztam még a példával. Meglepő, hogy ilyen nagy számok jöttek ki!

Előzmény: [254] Hajba Károly, 2004-02-17 19:19:42
[256] Lóczi Lajos2004-02-18 02:53:55

Kedves Onogur!

Mit értesz pontosan "pontos érték" alatt? Megmutattuk, hogy a harmadik megoldás létezik, egy valós szám, és más, ismert mennyiségekből elő is állítottuk (határérték segítségével).

Üdv, Lajos

Előzmény: [250] Hajba Károly, 2004-02-17 14:18:00
[255] Gubbubu2004-02-17 20:37:02

Kedves Zormac!

Ha minden igaz, eredetileg az n tényleg egész volt, tehát jól emlékszel (amennyiben én is jól emlékszem). Csak később Onogur és én kutatásokat:-) végeztünk a feladat mindenféle általánosításaival kapcsolatban. Egyébként egy másik (talán a 46.)-os feladatban azt mondtam, hogy a megoldó kedve szerint választhat az N,Z,Q,R,C alaphalmazok közül, és ezek felett is megoldhatja az egyenletet, a probléma bármely variációja más-más okok miatt érdekes lehet.

Előzmény: [241] Zormac, 2004-02-13 14:20:48
[254] Hajba Károly2004-02-17 19:19:42

A 44. feladatra a megoldás:

szín bika tehén
fehér 10.366.482 7.206.360
fekete 7.460.514 4.893.246
tarka 7.358.060 3.515.820
barna 4.149.387 5.439.213

Hát ez tényleg egy isteni csorda. :o)

Előzmény: [252] Hajba Károly, 2004-02-17 14:36:34
[253] Rizsa2004-02-17 15:41:45

Kedves Sirpi!

Hat ez nagyon nem kellett volna az en gyenge idegrendszeremnek, elegge idegbetegnek ereztem eddig is magam, de most hogy negyed ora probalkozas meg magamban uvoltozes utan itt egy gepteremben vegul is sikerult... hat nem mondom, jo erzes, amugy nagyon vicces volt, csak az elindulas tartott 5 percig. minden elismeresem eme remekmu felfedezesehez. levezetoul ajanlom a kovetkezot: laget.kicks-ass.net/pingvin/ kivalo mulatsag, egy kicsit kevesebb szellemi szint igenyevel.

udv, rizs

Előzmény: [249] Sirpi, 2004-02-17 13:12:19
[252] Hajba Károly2004-02-17 14:36:34

Kedves László!

Úgy tűnik, hogy szilveszter óta senki sem tért még magához :o), mivel a 44. feladatra még nem jött megoldás. Én is csak részmegoldást tudok adni, mivel csak a bikákra jött ki egész érték. Tehát a csordában 2226 fehér, 1602 fekete, 1580 tarka és 891 barna bika van, vagy együttesen egész számú többszörösei. A tehenekre eddig csak túl magas szám jött ki az egész számok körében.

HK

Előzmény: [199] lorantfy, 2003-12-29 14:48:13
[251] Hajba Károly2004-02-17 14:21:24

Kedves zormac!

Eredetileg a kéttagú szorzatokra gondoltam, így meglelted a 9 megoldást. A többtagú szorzattal nem foglalkoztam, de érdekes a kiegészítésed. Köszönet érte.

HK

Előzmény: [247] Zormac, 2004-02-17 12:28:57
[250] Hajba Károly2004-02-17 14:18:00

Kedves Sirpi!

Valószínű, hogy én kavartam be egy kicsit, de a [215] alatt gubbubu feltette a következő kiegészítő kérdését:

48.C. feladat: Nincs-e a harmadik, nem egész megoldásnak pontos értéke, mondjuk valami egész szám logaritmusa?

Erre eddig nem jött az iteratív válaszon kivül más. Tehát még annyi sem egy igazi matematikustól, hogy ... Ne is keressétek, mivel jelenleg nem tud a matematika ilyent felállítani! vagy bizonyítás, hogy nem lehet ilyent felállítani. Itt most nem LL határértékszámítási képletére gondolok.

HK

Előzmény: [249] Sirpi, 2004-02-17 13:12:19
[249] Sirpi2004-02-17 13:12:19

Ja, és Csimby, bocs, hogy ugyanazt mondtam el, mint Te, de mivel azt írta itt valaki, hogy még nem oldódott meg a 47. példa, söt, Zormac is írt rá egy megoldást, ezért nem álltam neki utánanézni, hogy tényleg meg lett-e már oldva. Bocsi érte.

S

Előzmény: [245] Csimby, 2004-02-16 20:12:00
[248] Sirpi2004-02-17 12:45:11

Sziasztok!

Akinek anno tetszett a farkas, kecske, káposzta folyón való átvitele, de túl könnyünek találta, annak itt egy kicsit nehezebb változat:

A nagy japán folyós játék

Sajna a szöveg japánul van, de ez ne riasszon el senkit, a kezdöképernyön a nagy kerek gombra kell bökni, és utána át kell juttatni az anyukát, apukát, két lányukat, két fiukat, valamint a rendört és a fegyencet a túlpartra, a következök figyelembevételével:

- Mindenkinek át kell menni a folyón

- Csak két személy lehet egyszerre a tutajon

- Az apa nem maradhat egyedül egyik lánnyal sem mert megveri ot

- Az anya nem maradhat egyedül egyik fiúval sem mert megveri ot

- A fegyenc (csíkos ruha) nem maradhat a rendor felügyelete nélkül mert megver valakit

- Csak az anya, az apa és a rendor vezetheti a tutajt

- A fegyenc egyedül maradhat, nem fog megszökni

Jó szórakozást a játékhoz!

S

[247] Zormac2004-02-17 12:28:57

57. feladathoz

Nem tudom, vajon van-e ennek a feladatnak elemi megoldása, s mivel én nem találtam olyat, így programmal estem neki. Ha már lúd, legyen kövér: nem csak a kitűzött formátumú megoldásokat kerestem, hanem másokat is, amelyek ráillenek a kiírás szövegére. Az eredeti, vagyis az AB*CDE=GHIJ formátumból az alábbi hetet találta a progi:

12 x 483 = 5796; 18 x 297 = 5346; 27 x 198 = 5346; 28 x 157 = 4396; 39 x 186 = 7254; 42 x 138 = 5796; 48 x 159 = 7632

Emellett adódott két darab A*BCDE=GHIJ típusú megoldás (4 x 1738 = 6952; 4 x 1963 = 7852), valamint számtalan A*B*CDE=GHIJ és A*BC*DE=GHIJ típusú is, például 3 x 28 x 71 = 5964 illetve 6 x 9 x 138 = 7452.

A négyféle típus elemeinek összlétszáma 79.

Akit esetleg érdekel, a program forrása és teljes kimenete megtalálható itt.

Előzmény: [246] Hajba Károly, 2004-02-16 22:43:09
[246] Hajba Károly2004-02-16 22:43:09

57. feladat:

Tekintsük a 48×159=7632 szorzatot, melyben az 1-9 számjegyek mindegyike szerepel, de csak egyszer. Képezzünk hasonló szorzásokat!

HK

[245] Csimby2004-02-16 20:12:00

Én is ezt mondtam [216]-ban, de hát gyorsan felejtenek a népek...

[244] Sirpi2004-02-16 11:07:28

n2+1=2m és m\geq2 esetén a bal oldal 4-es maradéka 1 vagy 2, a jobb oldalé 0, tehát ilyenkor nincs megoldás.

m=0 esetén n=0, m=1 esetén n=\pm1 adódik, és ezzel az egyszerü húzással az eredeti feladatot is megoldottuk.

S

Előzmény: [238] Zormac, 2004-02-12 16:24:18
[242] Lóczi Lajos2004-02-13 23:49:10

Kedves Onogur,

ha csak képlet kell, azt könnyű gyártani:) Íme egy, amely megadja az egyenlet megoldását, ha az iteratív módszer már szóba került:

lim(ak),

ahol ak+1=log2(ak2+1), és például a0=4. (A limesz létezik, mert az ak sorozat monoton növő és felülről korlátos.)

Előzmény: [240] Hajba Károly, 2004-02-13 13:27:42
[241] Zormac2004-02-13 14:20:48

Igazad van. Azt hittem, n egész szám, de valójában ez sehol sem volt leírva :-)

z.

Előzmény: [240] Hajba Károly, 2004-02-13 13:27:42
[240] Hajba Károly2004-02-13 13:27:42

Kedves Zormac!

n=4\to42+1>24

n=5\to52+1<25

Így a (4,5) tartományban van egy megoldás, ezt én iteratív úton meghatároztam [214], továbbá tény, hogy n>5 megoldás már nem létezik, amire hozzászólásodban utaltál. Mi arra is kiváncsiak lettünk volna, hogy ez képlet formájában megadható-e. Eddig erre nem jött válasz, tehát szerintem nem olyan egyszerű a feladat.

HK

Előzmény: [238] Zormac, 2004-02-12 16:24:18
[239] Zormac2004-02-12 16:26:35

nyomdahiba... természetesen ezt akartam írni: "ráadásul n=5-re már igaz, hogy 2n>n2+1 és ennek az öröklődését már..."

Előzmény: [238] Zormac, 2004-02-12 16:24:18
[238] Zormac2004-02-12 16:24:18

A 47. feladat valóban nem kelt el, pedig egyszerű... (az volt, hogy oldjuk meg: n2+1=2n).

Először is n=0 és n=1 megoldások, 2\leqn\leq5 pedig nem megoldások, amint azt könnyű ellenőrizni. Ráadásul n=5-re már igaz, hogy 2n<n2+1 és ennek az öröklődését könnyű belátni nagyobb n-ekre, például azáltal, hogy a 2n sorozat hányados-sorozata nagyobb, mint az n2+1 sorozaté (afféle indukció):

\frac{(n+1)^2+1}{n^2+1} = 1 + \frac{2n+1}{n^2+1} < 1+\frac{2n+2}{n^2-1} = 1 + \frac{2}{n-1} < 2.

Esetleg az lehetne egy nehezebb feladat, hogy oldjuk meg az alábbit (nem tudom, értelmes feladat-e, csak úgy eszembe jutott, hátha mi lesz :-)

n2+1=2m.

[237] lorantfy2004-02-12 13:24:38

56.feladat: 40 m magas torony tetejéről kell lejutnunk. Van egy 30 m-es kötelünk, késünk és gyufánk. A kötelet csak 40 m és 20 m magasságban lehet rögzíteni. Leugrani persze semmilyen magasságból sem tanácsos.

(Aki ismeri, ne lője le!)

[236] lorantfy2004-01-24 17:46:38

A 35. feladat a Cornides István Matematika - Fizika Emlékverseny 1.feladata volt és így szólt:

Határozza meg, mely p valós számokra van az

x3+px2+2px=3p+1

egyenletnek három különböző a, b, c valós gyöke, amelyre ab=c2.

35. faladat megoldása: A három gyök a, b, c tehát a gyöktényezős alak:

(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+ac+bc)x-abc=0

Összehasonlítva ezt az eredeti egyenlettel és alakítgatva:

a+b+c=-p  \implies  a+b=-c-p

ab+ac+bc=2p  \implies  ab+(a+b)c=2p

abc=3p+1  mivel  ab=c2  \impliesc3=3p+1

Második egyenletbe ab és (a+b) értékét beírva:

c2+(-p-c)c=2p  \implies-pc=2p  \implies0=p(c+2)

Tehát p = 0 vagy c=-2

p=0 esetén x3=1 a=1, b=1, c=1 és ab=c2 is teljesül.

Ha c=-2, akkor p = -3, a+b=5, ab=4 és így a2-5a+4=0.

Gyökei: a=1 vagy a=4, amihez b=4 vagy b=1 tartozik.

p= -3 esetén az eredeti egyenlet gyökei valóban 1, 4 és -2.

Előzmény: [233] Hajba Károly, 2004-01-23 11:50:49
[235] lorantfy2004-01-23 14:52:09

Kedves Károly!

Éppen most gondoltam, hogy kigyüjtöm a megoldatlan példákat. Szerencsére már megcsináltad - köszönet érte!

Előzmény: [233] Hajba Károly, 2004-01-23 11:50:49
[234] Hajba Károly2004-01-23 12:24:42

55. feladat:

Daraboljuk az egységnégyzetet kisebb négyzetekre.

A) Milyen részekre nem lehet feldarabolni?

B) Lehet-e legalább 11 féleképpen feldarabolni 11 részre?

HK

[233] Hajba Károly2004-01-23 11:50:49

Kedves Topik!

A még meg nem oldott feladatok listája:

3. [3] (félig megoldva!)

12. [60]

35. [148]

40. [180]

44. [199]

47. [204]

54. [229]

Jó gondolkodást a hétvégére :o)

HK

[232] Hajba Károly2004-01-22 08:21:42

Kedves László!

Tény, hogy hamar lelőttem, de cserében feltettem gyorsan egy másikat. Hasonló feladatokat a GEOMETRIA topikba is raktam, de eddig nem harapot rá senki, pedig lehetne még néhányat feladni. Érdekes - legalábbis számomra - a kitölthetőségi téma.

HK

Előzmény: [229] lorantfy, 2004-01-21 14:32:49
[231] Elti2004-01-21 17:18:42

Szevasztok, csao! szeretnelek titeket ertesiteni arrol, hogy a trefort.chat.net -en megalakult a KoMaL szoba, szivesen varunk mindenkit, hogy kialakithassunk egy jo kis matekos, fizikas legkort! remelem minnel tobben leszunk! Hello

[230] pataki2004-01-21 17:00:22

Érdemes megnézni az 1990. évi diákolimpia 3. feladatát.

Ez egyúttal könyvajánlás is: Reiman István - Dobos Sándor: Nemzetközi Matematikai Diákolimpiák 1959 - 2003, Typotex Kiadó

Előzmény: [216] Gubbubu, 2004-01-14 23:50:07
[229] lorantfy2004-01-21 14:32:49

Kedves Károly!

Ez rekord sebességű megoldás volt. Gratulálok! Kár volt megcsinálnom a megoldás ábrát.

Előzmény: [227] Hajba Károly, 2004-01-21 14:00:29
[228] Hajba Károly2004-01-21 14:10:54

Kedves László!

54. feladat:

Vegyünk el ebből a 64 golyóból 1 darabot. Mekorra az a legkisebb négyzet alakú keret belső mérete, amibe még bele lehet rakni ezt a 63 darab golyót?

HK

Előzmény: [226] lorantfy, 2004-01-21 13:37:20
[227] Hajba Károly2004-01-21 14:00:29

Kedves László!

Ebbe a keretbe még legalább 4 golyót bele lehet rakni, így 68 lesz benne.

HK

Előzmény: [226] lorantfy, 2004-01-21 13:37:20
[226] lorantfy2004-01-21 13:37:20

53. feladat: Egy 8 egység belső méretű négyzet alakú keretbe belaraktunk 64 db 1 egység átmérőjű fémgolyót. (A golyók egymással és a keret falával érintkeznek)

Hány ugyanilyen golyót tudnál még berakni a keretbe?

[225] Hajba Károly2004-01-19 11:00:50

Kedves László!

Hát mit monjak erre? Gratulálok.

Kiegészítendő az 52. feladatot keressünk több megoldást!

HK

Előzmény: [224] lorantfy, 2004-01-18 21:34:02
[224] lorantfy2004-01-18 21:34:02

Kedves Károly!

Ügyes példák – főleg a gyujtózsinóros!

50. feladat megoldása: Elég reménytelennek tűnik a megoldás, mivel véletlenszerűen égnek a zsinórok nem darabolhatjuk őket. Akkor mit lehet tenni? Ami biztos, hogy, ha mondjuk már fél órája ég a zsinór akkor a hátralévő zsinórdarab is fél óráig ég még. Tehát ha mindkét végét meggyujtjuk az egyik zsinórnak, akkor 1/2 óra alatt ér össze a láng.

Ha a másik zsinórt is meggyujtjuk az első két végének meggyujtásával egyidőben, akkor amikor az elsőn a láng összeér a másik zsinórból még pont félórányi van hátra. Ekkor meggyujtjuk a második zsinór másik végét is és a két láng pontosan 1/4 óra múlva ér össze. Tehát lemértük a 3/4 órát.

51. feladat megoldása: A kolbászt 3 vágással felvágjuk 4 egyenlő részre, majd az egyik részt továbi két vágással harmadoljuk.

52. feladat megoldása: A tortát 2 párhuzamos vágással harmadoljuk, majd 1 merőleges vágással elvágjuk az 1/4 részénél.

Előzmény: [223] Hajba Károly, 2004-01-17 01:11:18
[223] Hajba Károly2004-01-17 01:11:18

50. feladat:

Adott két kanóc, melyek egyenként pontosan 1-1 óra alatt égnek le, de az égési sebességük véletlenszerűen változó. (Tehát a fele nem feltétlen fél óra alatt ég le.)

Hogyan tudunk ezen kanócok segítségével 0,75 órát lemérni?

51. feladat:

Hogyan lehet egy szál kolbászt 10-nél kevesebb vágással úgy feldarabolni, hogy akár 3, akár 4 egyenlő részre lehessen osztani?

52. feladat:

Hogyan lehet egy négyzet alakú tortát 3 egyenes vágással felszeletelni, hogy akár 3, akár 4 egyenlő részre lehessen osztani?

HK

[222] Gubbubu2004-01-16 18:32:09

Kedves Onogur!

Semmi baj, úgy sejtettem, hogy az eredeti szövegrészben egy rész véletlenül törlődött (ilyesmi sokszor előfordul, kétszer át szoktam nézni, mit írok, de mindig kerül hiba bele). Az első féle általánosítás így is érthető volt. Persze, megoldani egyiket sem tudom, a numerikus és közelítő módszerek elmélete nemigen megy nekem.

Üdv.: G.

(U.I. Azt hiszem, megoldottam a mágusos feladatot, de még várok egy-két hétig, mielőtt felteszem, hátha más is szeretne még gondolkodni.)

Előzmény: [221] Hajba Károly, 2004-01-16 14:07:52
[221] Hajba Károly2004-01-16 14:07:52

Kedves gubbubu!

A kétféle általánosítási irány összevonását elkapkodtam. Tehát korrigálva magam:

1. A x2+d=2x egyenlet görbéinek jellegéből adódik, hogy 1, 2 v. 3 megoldás lehetséges, ahol d lehet 0 értékű is, továbbá mely d-re adódik 2 megoldás?

2. A feladaton lehet általánosabban is az an+d=na formában gondolkodni. Pl. x3+1=3x esetet az ábra mutatja. (y harmadával torzítva és ott fenn van még egy metszéspont.) x1\approx-0,845838;x2=0;x3=2;x4\approx3,220644. Így itt 4 metszéspont van.

Remélem, most már nem írtam marhaságokat. :o)

HK

Előzmény: [220] Gubbubu, 2004-01-16 00:46:54
[220] Gubbubu2004-01-16 00:46:54

Üdv, Onogur,

Kösz a kimerítő (de érdekes) magyarázatot, és a történeti kiegészítést! Most már lesz min gondolkodnom a következő kb. 5 évben... Valószínűleg már az sem triviálisan látható be, hogy mindig lf. 3 metszéspont van, mert a "görbék jellege" kifejezés arra utal, hogy minimum differenciálszámítás van a háttérben. Legalábbis ilyentájt, 0:36-kor egyelőre ennyit vagyok képes látni.

Persze ki lehet tűzni a "Nehezebb matematikai problémák" rovatban ezeket az általánosításokat... hátha egyszer valaki megoldja őket... mondjuk valaki, aki "lovaszlaszlo" n.name-mel van bejelentkezve...

Üdv: G.

Előzmény: [219] Hajba Károly, 2004-01-15 09:24:06
[219] Hajba Károly2004-01-15 09:24:06

Kedves gubbubu!

- A Bezier-görbék és a továbbfejlesztett változatuk a B-spline módszer 30 éve kezdett el terjedni a mérnöki számítógépes formatervezés területén. Lényege, hogy adott pontokkal leírjuk a görbét vagy térbeli felületet és a pontok közötti vonalat ill. felületet súlyozott paraméterfüggvénnyel írjuk le. Lényeges, hogy a pontokban és illeszkedési vonalakban legalább másodrendűen illeszkednek a görbék ill. felületek. A pontokkal, s illeszkedésükkel lehet globális vagy lokálisan változtatni ill. a súlyozás mértékét is lehet szabályozni a modell megjelenésén.

P. Bezier a '70-es évek legelején dolgozta ki e módszert a Renault gépkocsik formatervezésének számítógépes modellezése során, s ezt vették át más mérnöki területek is.

- A felvetetted problémán egyébként már korábban én is gondolkodtam a x2=2x formában. Ennek is két egészértékű megoldása van. Továbbá felvetésed után a következő általánosítások vetődtek fel bennem:

A görbék jellegéből adódik, hogy 1, 2 v. 3 megoldás lehetséges, s általában na+d=an alakú, ahol d lehet 0 értékű is, továbbá a és d függvényében mely d-re adódik 2 megoldás?

HK

Előzmény: [218] Gubbubu, 2004-01-15 00:58:00
[218] Gubbubu2004-01-15 00:58:00

Kedves Onogur!

Hűha! A Bezier-görbét nem ismerem, de a neve nem hangzik rosszul, ahogy az sem, amit az egész CAD-os eljárásról mondtál. Nem hittem volna, hogy egy ilyen, viszonylag egyszerű alakú (bár nem feltétlenül egyszerűen megoldható) egyenlet ábrázolása mögött is komoly matematika húzódhat meg. Hiába, nekem az alkalmazott matematika tudásom nem jár a fellegekben!

Ami a pótkérdéseket illeti: természetesen nem várom, hogy örökké csak az én kérdéseimre válaszolj, nagyon köszönöm az eddigi hozzászólásaidat is... csak automatikusan fölvetődtek, mint a megoldásból természetesen következő problémák.

Egyébként eme példa hatására a következő sejtés fogalmazódik meg az emberben: ahogy 4-nél magasabb fokú polinomiális egyenletek megoldására nincs gyökképlet, úgy az f(x)=xk egyenletek (f(x) k-adfokú polinom) sem oldhatóak meg alapműveletek, 2..k-adik gyökvonás és (mondjkuk k alapú) logaritmuskeresés segítségével... Úgyhogy jöhetnek a mérnökök, hajrá közelítő számítások... Soha nem hallottam, hogy ilyen témájú, azaz exponenciális-polinomiális kevert egyenletek képlettel való megoldására irányuló kutatások folytak volna valahol (bár mintha halványan emlékeznék, hogy a differenciálegyenletek elméletében van valami szerepük az ilyen egyenleteknek), de ha valaki tud valamit róluk, csak szóljon.

Viszlát mindenkinek holnap: G.

Előzmény: [217] Hajba Károly, 2004-01-15 00:06:40
[217] Hajba Károly2004-01-15 00:06:40

Kedves Gubbubu!

A rajzolást nem egyszerűbb, de rajzprogrammal készítettem. Mérnök lévén, rendelkezésemre áll egy profi CAD program, de innentől kezdve "csaltam", mint Rodolfo. Minden egészértékhez kiszámoltam a függvényértéket és erre a koordinátahelyre pontot illesztettem, majd a pontsorra egy Bezier-görgét. A parabolát százalékos, míg a hiperbolát ezrelékes pontossággal követi. A harmadik metszéspontot 2 tizedesjegy pontossággal megadta, innen már numerikusan finomítottam az értéket.

A pótkérdéseidre nem tudok válaszolni, mivel a szakmámhoz nem szükséges matematikatudásom nem jár a fellegekben. Talán Géza vagy Sirpi mondanak valami érdekeset e témáról. :o)

HK

Előzmény: [214] Gubbubu, 2004-01-14 20:09:39
[216] Gubbubu2004-01-14 23:50:07

Kedves Csimby;

Valóban, ez nem tűnik borzasztó nehéznek. Sőt, alighanem a 2n+1=n2 diofantikus egyenlet is hasonlóképp oldható meg. Vagyis 23 az egyetlen kettőhatvány, melyhez egyet adva a hatvány (az alap és kitevő szerepe) "megfordul".

Köszönettel: G.

Előzmény: [215] Csimby, 2004-01-14 22:27:23
[215] Csimby2004-01-14 22:27:23

Az egészek könnyen megmondhatóak: Ha n nagyobb/egyenlő kettővel, akkor (2 az n.-en), 4-gyel mindig osztható, míg n*n+1, 4-gyel osztva 1 vagy 2 maradékot ad -> marad az n=0 és n=1 eset.

[214] Gubbubu2004-01-14 20:09:39

Kedves Onogur, azaz Károly!

Köszönöm a megoldást, külön az ábrát. Érdekelne, hogy mivel csináltad (pl. valamilyen mat. szoftverrel, vagy egyszerűbb rajzprigrammal)? Én szabadkézi rajzzal próbálkoztam, de - amint látható - a két görbe túlságosan összeesik, így eltekintve a két triviális megoldástól és a harmadik szemmel láthatótól, nemigen látszott semmi.

Ezek után már csak két kérdés marad:

48.B. feladat: Nem lehetne valahogy algebrailag vagy számelméletileg megoldani? Megelégednék azzal is, ha csak az egész megoldásokat találnánk meg, de számolással.

48.C. feladat: Nincs-e a harmadik, nem egész megoldásnak pontos értéke, mondjuk valami egész szám logaritmusa?

Emlékeztetőül: a n2+1=2n egyenletről van szó.

Előzmény: [213] Hajba Károly, 2004-01-14 13:13:16
[213] Hajba Károly2004-01-14 13:13:16

Kedves gubbubu!

A 48. feladatra itt van az ábra, ott lent kétszer metszik egymást a görbék. Továbbá a három megoldásból két nyilvánvaló eredmény az x1=0 ill. x2=1, továbbá az általam közelítő módszerrel kiszámolt x3\approx4,25746.

Előzmény: [207] Gubbubu, 2004-01-06 21:14:24
[212] Kós Géza2004-01-11 15:11:06

A diszkrét fogalma megengedi hogy a halmaznak legyen torlódási pontja, csak a torlódási pont nem lehet a halmazban. Például az 1,1/2,1/3,... sorozat diszkrét, pedig van torlódási pontja, a 0.

Mindkét értelmezésben igaz, hogy Rn-ben minden diszkrét halmaz megszámlálható, ezt többféleképpen is be lehet bizonyítani. Nem írom le egyik megoldást sem, csak útbaigazítást szeretnék adni.

1. megoldás: A halmaz minden pontjához rendeljünk hozzá (valahogy, ügyesen) egy olyan, közeli pontot, aminek mindegyik koordinátája racionális.

2. megoldás: Osszuk fel a teret megszámlálható sok korlátos részre, például egységkockákra, és keressünk olyan kockát, amiben a halmaznak sok pontja van.

Akinek esetleg mindez túl könnyű, annak egy nehezebb változat: Bizonyítsuk be, hogy egy f:R\toR függvénynek csak megszámlálható sok helyen lehet szigorú lokális maximuma. (Egy a pontban szigorú lokális maximuma van, ha létezik olyan \varepsilon>0 szám, hogy minden x\in(a-\varepsilon,a+\varepsilon), x\nea esetén f(x)<f(a).)

Előzmény: [211] Csizmadia Gábor, 2004-01-10 16:50:46
[211] Csizmadia Gábor2004-01-10 16:50:46

49. feladat

Szerintem nagyon érdekes ez a feladat, már régóta foglalkoztatott a kérdés, de csak nemrég tudtam megadni rá a választ: Ismeretes, hogy bizonyos ponthalmazok diszkrét pontokból állnak, bizonyos ponthalmazok pedig nem. Diszkrét ponthalmazoknak nincs torlódási pontjuk. Ha a természetes számokat ábrázoljuk a számegyenesen, akkor azok diszkrét pontokként jelennek meg. A racionális számok számossága megegyezik a természetes számokéval, a számegyenesen mégis minden pontjuk torlódási pont. Valós számokat úgy képzeljük el, hogy folytonosan kitöltik a rendelkezésre álló számegyenest, valamint tudjuk, hogy a valós számok számossága nagyobb, mint a természetes számoké. Általában egy euklideszi tér pontjai ugyanannyian vannak, mint a valós számok. De vajon létezik-e olyan diszkrét Rn-beli (n természetes szám, tehát egyenes pontjaiból álló, síkbeli, térbeli, vagy magasabb dimenzióbeli) ponthalmaz, aminek ugyanannyi pontja van, mint ahány valós szám?

[210] Hajba Károly2004-01-09 12:21:40
Előzmény: [209] Hajba Károly, 2004-01-09 12:20:15
[209] Hajba Károly2004-01-09 12:20:15
[208] Csimby2004-01-07 00:07:28

Legyen a számtani sorozat 1. eleme: a, differenciája d, ekkor az első n+1 elem összege: a+(a+d)+(a+2d)+(a+3d)+...+(a+nd)=(n+1)a+(n(n+1)/2)d=(n+1)(a+(n/2)d). T.F.H. ez egyenlő a szorzatukkal: (n+1)(a+(n/2)d)= a(a+d)(a+2d)(a+3d)...(a+nd) Osszunk le (a+(n/2)d)-vel: (ha n páratlan akkor ez nem szerepel a jobb oldalon,de végig lehet gondolni, hogy így is jó). n+1=a(a+d)(a+2d)...(a+(n/2-1)d)(a+(n/2+1)d)...(a+nd) ha d=0, akkor trivi, nézzük most d>1-et, ekkor: a+nd>a+n. a=0 trivi. Ha a>=1 akkor a+n>=n+1 -> a+nd>n+1, és mivel a szorzatban minden tag >=1, a szorzat nagyobb lesz a bal oldalon maradt (n+1)-nél (hiszen a jobb oldalon szerepel (a+nd) mint szorzó tényező) Maradt a d=1 eset. a+nd=a+n,csak akkor ha a szorzásban a többi tényező 1 -> n=2, a=1

[207] Gubbubu2004-01-06 21:14:24

Üdv!

Rövid időre megint itt vagyok.

Örülök, hogy legalább egyik feladatom megoldhatónak (tehát értelmesnek) bizonyult, remélem szereztem egy kellemes percet GJ-nek, nem hiszem, hogy tovább törte volna a fejét... köszönet a frappáns megoldásért!

Valahol a http://orange.ngszkij.hu honlapon állítólag van néhány megjegyzés e feladattal ill. általánosításaival kapcsolatban (nekem hibát jelez a Netscapem, ha odamegyek, nem tudom, pontosan hol).

Néhány hiba vagy hiányosság került az előző, 204-es hozzászólásomba (csak most tanulom a TEX-et...):

1. a második 47. feladat valójában a 48. (feltéve, ha az előzőek számozása hibamentes);

2. Eme feladatnak elsősorban az algebrai-számelméleti jellegű megoldásai érdekelnének, bár ha valaki ábrát készítene, az is szép lenne... (A feladatban az lenne az "érdekes", hogy egy hatványhoz egyet adva fordul az alap és a kitevő szerepe, jé!...)

3. A 6-ról szóló feladatban cáfolással érdemes próbálkozni, legalábbis valós számokból álló számtani sorozatok esetében. Ha a kérdéses számtani sorozat tagjai-elemei számát 2-re ill. 3-ra korlátozzuk, "kellemes" kis polinomgyök-keresési ill. diofantikus problémákat kapunk, nem muszáj rögtön az egész feladatot teljesen általánosan megoldani...

Megjegyzem, nyithatnánk egy Érdekes matematikai feladatok II. topicot az eddig megoldatlan feladatokat összegyűjtendő, mert kezd a dolog áttekinthetetlenné válni...

[206] lorantfy2004-01-06 20:50:09

Kedves Attila!

Kösz a helyreigazítást. Én is rájöttem a hibára, csak már azután, hogy feltettem a hozzászólást. Hirtelen valami olyasmire gondoltam, hogy miközben x mint valós szám végigfut az adott intervallumon, a zárójelben lévő kifejezés értékei milyen egész számokat érintenek, és ezek szummája. Ez persze hülyeség, elkapkodtam!

Nagyon szép és szemléletes a megoldásod! Az a fajta, amit megnéz az ember és csak fogja a fejét: - Milyen egyszerű, mért nem jutott ez nekem eszembe? Felteszek egy ábrát, hátha más is kedvet kap, hogy megnézze a hozzá tartozó feladatot és megoldást! (Lászlónak hívnak!)

Előzmény: [203] jenei.attila, 2004-01-05 15:27:03

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]