Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[1272] jonas2006-06-08 20:08:23

Na, nézzük csak

 \frac{10^{2004}+1}{10^{2005}+1} < \frac{10^{2005}+1}{10^{2006}+1}

Keresztbeszorozhatunk, mievl a nevezők pozitívak:

(102004+1)(102006+1)<(102005+1)2

Kifejtünk:

104010+102006+102004+1<104010+2.102005+1

Ez nyilván fordítva igaz, tehát az eredetiben az első a nagyobb.

Előzmény: [1270] gphilip, 2006-06-08 17:55:43
[1271] Doom2006-06-08 18:59:10

"Emelt szintű érettségi Matematikából" téma, 106-os hozzászólás, ha jól emlékszem...

Előzmény: [1270] gphilip, 2006-06-08 17:55:43
[1270] gphilip2006-06-08 17:55:43

na akkor ide írom a problémámat, mert a másik topicban nem kaptam rá megoldást... egyszerűnek tűnik, de nem ugrik be, és nem nagyon szeretném épp ezt húzni mat szóbelin :))

szóval egy pofonegyszerű gyors megoldást várok a következő kérdése:

Melyik a nagyobb?

[1269] epsilon2006-06-07 17:25:00

Helló! Találtam egy egész egysezerű megoldást, kérdés, ez még egyszerűbben is leírható? (Érdemes követni a betűs ábrát!)

Ha A páros szám lenne, akkor a 2, 4, 6 közül csak két páros szám marad. Ezek nem lehetnek mindkettő a G, E, F csúcsok valamelyikében, pl. az E és F-ben, ugyanis ekkor mint A+B+C+E mint A+B+D+F páros lenne. Nem lehet úgy sem, hogy egyik az E, F, G valamelyikében, és másik a B, C, D valamelyikében , mert pl. E-ben és B-ben illetve E-ben és D-ben, mert ekkor A+B+F+D páros illetve A+B+E+C páros. Úgy sem lehet, hogy mindkettő a B, C, D valamelyikében legyen, pl. a C és D-ben, mert ekkor mint A+B+E+C, mint A+B+F+D páros. Tehát E páratlan, de nem lehet sem 7 sem 5 mert ekkor a másik három szám összege 15-7=8 illetve 15-5=10 lenne, se sem 15, sem 10 nem bontható fel három különböző módon, három szám összegére. Ha A=3 akkor 15-3=12=1+5+6=1+4+7=2+4+6, illetve ha A=1 akkor 15-1=14= 2+5+7=3+4+7=3+5+6 és mivel vagyis két-két 3 tagú összegre való felbontás, páronként az 1, 4, 6 illetve 3, 5, 7 kétszer előforduló számokkal, így ezek az oldalközepeken helyezkednek el, és csak a Csimby 2 ábráján látható megoldásokat adják.

[1268] epsilon2006-06-05 06:39:59

Helló Csimby! Valóban elnéztem egy esetet :-( Az (1) és (2) összefüggéseket felírtam, a három darab (2)-es összefüggés páronkénti egyenlőségéből kijön: B+E=D+G és C+G=B+F ahonnan B-G=D-E=C-F=k. Könnyn látható, hogy k>=2 nem lehetséges, mert akkor 3 darab 2 vagy annál nagyobb különbség kiviszi a 7 számot az 1;2;..;7 számkörből. Itt hibáztam: maradt k=1, innen meg "kikínoztam" a megoldást. Te valóban már annyit egyszerűsítettél, hogy az általad felírt (4) alapján, k=2-A is igaz. Így k=-1 is megfelel amit kihagytam :-( mert k<=-2 ugyanúgy nem lehet mint a leírt.) A hiba kijavítva általad, de még most is azon morfondírozok, hogy 1 és 7 között 2, 4, 6 páros (3 db), 1, 3, 5, 7 (4 db)páratlan, és valahogy a skatulya elv nem-e kapcsolható a páros páratlansággal, hogy rövidebb megoldást kaphassunk??? Üdv, és kösz: epsilon

[1267] xviktor2006-06-05 01:50:48

Valoban :)

Előzmény: [1265] Csimby, 2006-06-05 01:48:27
[1266] xviktor2006-06-05 01:49:32

Sry!

Kihagytam egy-egy eshetoseget, amikor nem csak kulonbozo kombinaciok vannak... A masik kombinaciokkal kijon a 3 is.

Udv: Vik

Előzmény: [1264] xviktor, 2006-06-05 01:38:22
[1265] Csimby2006-06-05 01:48:27

Az a baj ezzel, hogy pl. (3k)+(3k)+(3k+1)+(3k+2) már magába foglal több mint 3 esetet (hiszen csak 3k+1 alakú számból 3 db van 1-től 7-ig) és így nem kell, hogy a 15-nek a 3db különböző felbontása mind a 3 általad említett típusból tartalmazzon egyet-egyet.

Előzmény: [1264] xviktor, 2006-06-05 01:38:22
[1264] xviktor2006-06-05 01:38:22

Hali!

Egy megoldas szerintem:

Eloszor vizsgaljuk a szamokat 3-al valo oszthatosaguk alapjan: (3k+1),(3k+2),(3k),(3k+1),(3k+2),(3k),(3k+1)

Ezekbol csak 3 fele keppen jon ki 3-al oszthato szam /mivel a 15 is az/:

(3k)+(3k)+(3k+1)+(3k+2), (3k)+(3k+1)+(3k+1)+(3k+1), (3k+1)+(3k+1)+(3k+2)+(3k+2). Ugye ezek kozul mindegyikben szerepelnie kell A-nak, tehat A 3k+1 alaku, azaz 1,4 vagy 7.

Most vizsgaljuk 5-el valo oszthatosag alapjan: 5k+1), (5k+2), (5k-2), (5k-1), 5k, (5k+1), (5k+2)

Ezekbol szinten csak 3 felekeppen johet ki 5-el oszthato szam:

(5k)+(5k+1)+(5k+1)+(5k-2), (5k-1)+(5k+1)+(5k-2)+(5k+2), (5k+2)+(5k+2)+(5k+1)+(5k). MIvel ezek mindegyikenek is tartalmaznia kell A-t, A 5k+1 alaku, azaz 1 vagy 6, azaz a fenti halmazzal a metszetet veve A csak 1 lehet.

Udv: Vik

Előzmény: [1261] epsilon, 2006-06-04 21:15:22
[1263] Csimby2006-06-05 01:17:22

(1) A+B+C+D+E+F+G=28 (ha jól értem, akkor A,B,C,D,E,F,G különböző számjegyek)

(2) A+B+E+C=A+C+G+D=A+D+F+B=15 (a négyszögekben a számok összege 15)

(2)-beli egyenlőségeket összeadva: 3A+2B+2C+2D+E+F+G=45

Ebből (1)-et kivonva:

(3) 2A+B+C+D=17

Felhasználva a (2)-beli egyenlőségeket:

(4) A+D=E+2, A+C=F+2, A+B=G+2

Mivel a számjegyek különbözők kell, hogy legyenek, ezért A,B,C,D egyike sem lehet 2! (Pl. ha D=2, akkor A=E)

Ekkor viszont E,F vagy G egyenlő 2-vel.

(3)-ból és (4)-ből kapjuk, hogy E+F+B=G+D+F=E+C+G=13.

A szimmetria miatt feltehetjük, hogy E=2, ekkor F+B=C+G=11. A 11 pont kétféleképpen bomlik fel két 1 és 7 közötti egész szám összegére: 7+4, 6+5.

A és D már csak 1 és 3 lehet (a többi jegyet felhasználtuk). Mindkét esetben van megoldás. Tehát A ezt a két értéket veheti föl.

Előzmény: [1261] epsilon, 2006-06-04 21:15:22
[1262] Hajba Károly2006-06-05 00:38:34

Ha jól értettem a feladatot, én 6 megoldást is találtam. A=(1, 4, 7), mindhárom kétszer is. S a <A>-<négy szám összeg> sorban: 1-13, 4-14, 1-16, 7-16, 4-18, 7-19

Előzmény: [1261] epsilon, 2006-06-04 21:15:22
[1261] epsilon2006-06-04 21:15:22

Sziasztok! Íme megint egy érdekes logikai-matematikai feladat: Az A, B, C, D, E , F, G számok az 1-től 7-ig terjedő különböző pozitív egészek valamelyikét jelöli:

A feltétel: mindhárom négyzet mentén a számok összege 15. Milyen szám lehet az A?

Nem egyszerűen bizonyítottam, hogy csak egyik lehet a 7 közül, azt is, hogy melyik, de egy ilyen egyszerű feladatra nem létezne egszerű megoldás? Hát ezért tettem ide fel, hátha több szem többet lát alapon, egyszerűbben is lehet dolgozni mint Én!

Várom tehát a meglátásaitokat! Üdv: epsilon

[1260] jonas2006-06-02 19:13:26

1, 2.

Előzmény: [1259] MateMSR, 2006-06-02 18:56:20
[1259] MateMSR2006-06-02 18:56:20

Sziasztok!

Mar regota tunodom azon hogy lehet-e egy ismetlodo tizedes szam egyenlo egy egesz szammal. Igaz-e az hogy 9.999... a vegtelensegekig ismetelve egyenlö lesz 10-el?

Ha igen akkor hogyan, mert mindig lesz kulönbseg a 10 es a 9.999... kozott?

[1258] epsilon2006-05-28 15:38:58

Szia Lorantfy! Rendben, megpróbálom így cáfolni, hogy nem lesz duplázás. Valóban, ha az alaphelyzet nem áll elő, akkor a többi ismétlődés is kizárt. Alaposabban megfigyelem, hogy az alakzatok "dudorai" miveb játszanak kúlcsszerepet! Üdv: epsilon

Előzmény: [1257] lorantfy, 2006-05-28 14:34:36
[1257] lorantfy2006-05-28 14:34:36

Szia Epszilon!

A feladat szövege szerint az egymásba forgatható négyzeteket különbözőnek kell tekintenünk és így szerintem nincs átfedés.

A kételyeidet úgy oszlathatod el, hogy a középső (5-ös) kisnégyzet 90 vagy 180 fokos elforgatása után próbáld meg pl. az alaphelyzetet előálíteni.

Pl. +90 fokos elforgatás után a 8-as és a 2-es nem kerülhet vissza az eredeti helyére.

Hasonlóan 180 fokos elforgatás után.

Előzmény: [1256] epsilon, 2006-05-28 05:33:05
[1256] epsilon2006-05-28 05:33:05

Szia Lorantfy!

Valóban, jobb helyre is tehettem volna a feladatot, de még kezdő vagyok a fórumon (mármint olvasgattam, de nem nyitottam témát)nem olvastam mindent át,így nem láttam, hol lenne a legjobb a helye :-( Kár, hogy nem lehet átrakni ide :-(

Kösz a megoldást, frappáns és elegáns! Erre gondoltam Én is, csak nem vagyok meggyőződve a következőről: A leírt módon NEM-E SZÁMOLUNK valamilyen kirakási helyzetet 2-szer, vagy többször?

1) Egyrészt az 5-ös a fordulása magával hordozza, hogy balra, jobbra, lent, fent a 2, 8, 6, 8 melyike is illeszkedik. Na mármost, ha az 5-öst forgatom, valamint az illeszkedési lehetőségek függvényében a 2 és 4, illetve 6 és 8 helyet cserélnek, nem-e kapok vissza ugyanazon lehetőségeket, csak elfordított helyzetbe? 2) Ugyanerre gondolok, hogy amint a 4 sarkot, valóban függetlenül permutálom, és ezzel egyidőben a 2, 4, 6, 8-at is változtatom, nem-e jönnek be azonos helyzetek, csak elforgatva, pl 1, 2, 3 bejön úgy is, hogy a jobb sarokban oszloposan szerepel ez a 3 szám.

Tehát a 24 permutáció valóban független, de kételyeim vannak affelől, hogy a 2, 4 6 8 lehetséges cseréivel, nem-e ismétlődnek 1-szer, és ehez hozzászámítva az 5-ös forgásait is nem-e ismétlődnek 2-szer is bizonyos állások. Mert ezt a 3 "eseményt" nem látom egymástól függetlennek!

Nagyon örvendenék, ha sikerülne ezt a kételyemet eloszlatni, eloszlattatni :-) Ismételten is, és előre is kösz! Üdv: epsilon

Előzmény: [1254] lorantfy, 2006-05-27 20:50:31
[1254] lorantfy2006-05-27 20:50:31

Epsilon feladata:

Helló! Előkerült egy érdekes feladat, amelynek a lényege: a 9 alakzat maradéktalan felhasználásával ezek csúsztatásával /forgatásával (a síkból való kiemelése nélkül) hány különböző négyzet rakható össze (hézagmentesen és fedés nélkül)? Egy egyszerű rövid megoldásra várok! ;-) Íme az ábra:

A sarkon lévő 1,2,3,4 számú kisnégyzetek egybevágóak, ezek a többitől függetlenül permutálhatók 4!=24 féleképpen.

Az 5-ös csak fordulhat. Mind a 4 féle helyzetében a 2-es a 4-essel és a 6-os a nyolcassal függetlenül cserélhető. Ez 4x2x2=16 eset.

Így összesen 16x24=384 eset van.

[1253] Lóczi Lajos2006-05-08 10:25:22

Köszönöm a hivatkozást. (Akkor az [1251]-es hozzászólásom így pontosabb: "...középiskolások is rájöttek pár éve...")

Előzmény: [1252] Gergo73, 2006-05-08 06:32:26
[1252] Gergo732006-05-08 06:32:26

Ez egy klasszikus eredmény (és könnyen bizonyítható a Stirling-formulából). A szóban forgó függvény az ún. bináris entrópiafüggvény. Pontosabb formában lásd az (1) egyenlőtlenséget ezen dokumentum vége felé.

Előzmény: [1250] Lóczi Lajos, 2006-04-27 12:21:52
[1250] Lóczi Lajos2006-04-27 12:21:52

Valóban. Amúgy erre japán középiskolások jöttek rá pár éve, miközben Mathematica-val játszottak és sorra nézték, mennyi (a+b)n. Amikor n nagyobb, akkor egy sorba már nem fér ki az eredmény, sőt, kb. egy tag lesz egy sor. A képernyőt lefelé görgetve adódott a sejtésük, tehát igazi kísérleti matematikai eredmény ez :)

Előzmény: [1249] nadorp, 2006-04-26 14:29:38
[1249] nadorp2006-04-26 14:29:38

Először valami Gauss-görbéhez hasonlót vártam, ehelyett az f(x)=-xlgx-(1-x)lg(1-x)függvény jött ki.

Előzmény: [1248] Lóczi Lajos, 2006-04-24 02:40:11
[1248] Lóczi Lajos2006-04-24 02:40:11

231. feladat.

Határértékben milyen alakúak az egymás alá írt binomiális együtthatók 10-es számrendszerben?

Pontosabban fogalmazva: valamely n pozitív egész esetén írjuk egymás alá az (a+b)n kifejtésekor kapott együtthatókat, pl. n=16 esetén

1

16

120

560

1820

4368

8008

11440

12870

11440

8008

4368

1820

560

120

16

1

(Készítsük ezt el nagyobb és nagyobb n-ekre is.) Ha most fejünket 90 fokkal jobbra döntjük és hunyorítunk, egy lapos oszlopsor rajzolódik ki az ábrán. Adjuk meg ennek a pontos alakját, ha n tart a végtelenbe.

A konkrétság kedvéért még pontosabban fogalmazva ("normálva"): tegyük át az ábrát a szokásos koordinátarendszerbe, úgy, hogy a [0,1] szakaszt n egyenlő részre felosztjuk, majd a k-adik (k=0,1,2,...,n) osztópontnál felmérjük azt a törtet, melynek nevezője éppen n, számlálója pedig \binom{n}{k} 10-es számrendszerbeli jegyeinek száma. Így egy véges ponthalmazt nyerünk [0,1] felett minden egyes n esetén. Kérdés tehát, hogy e ponthalmaznak mi lesz a határértéke. Válaszként egy [0,1]\toR valós függvényt várok.

[1247] Csimby2006-04-22 00:07:26

230. feladat Bizonyítsuk be, hogy:

a.) ha 2p előáll legfeljebb 4 db. négyzetszám összegeként, akkor p is.

b.) ha 3p előáll legfeljebb 4 db. négyzetszám összegeként, akkor p is.

(p prím)

[1246] Lóczi Lajos2006-04-08 23:05:50

229. feladat.

a.) Adjunk példát olyan f(x,y) kétváltozós valós függvényre, hogy valamely a,b,c,d véges határok mellett nem létezik az \int\int_{[a,b]\times[c,d]} f kettős Riemann-integrál a téglalapon, de létezik az \int_a^b \left(\int_c^d f(x,y) dx \right)dy iterált kétszeres integrál.

b.) Adjunk példát olyan f(x,y) kétváltozós valós függvényre, hogy valamely a,b,c,d véges határok mellett létezik az \int\int_{[a,b]\times[c,d]} f kettős Riemann-integrál a téglalapon, de nem létezik az \int_a^b \left(\int_c^d f(x,y) dx \right)dy iterált kétszeres integrál.

c.) Adjunk példát olyan f(x,y) kétváltozós valós függvényre, hogy valamely a,b,c,d véges határok mellett léteznek ugyan az \int_a^b \left(\int_c^d f(x,y) dx \right)dy és \int_c^d \left(\int_a^b f(x,y) dy \right)dx iterált kétszeres integrálok, de nem egyenlőek.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]