Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[1328] Sirpi2006-08-31 10:09:51

Utánaszámoltam, annyi az. Van még egy hamis megoldás, amikor 50 a terület, ilyenkor P nem a négyzet belsejébe esik.

Előzmény: [1327] Yegreg, 2006-08-30 23:31:02
[1327] Yegreg2006-08-30 23:31:02

Azt hiszem 288, de már késő van, szóval feltehetőleg elszámoltam. :)

[1326] barnus2006-08-30 21:09:57

Köszönöm a megoldást Lorantfy! Itt van egy újabb példa a vállalkozó szelleműeknek! Az ABCD négyzet belseében lévő P pont távolsága három csúcstol sorra PA=7, PB=13 és PC=17. Számítsuk ki a négyzet területét!

[1325] rizsesz2006-08-29 20:15:37

Hát persze, hogy nem ennyire triviális, hehh. Újabb szórakoztató feladvány 2.0.: A zöldségesnél sorban állnak az emberek, és :) az első, illetve az utolsó ember kivételével :) mindenki azt észrevételezi, hogy az előtte és mögötte álló emberek közül ugyanannyit ismer. Bizonyítsuk be, hogy az első és az utolsó embernek ugyanannyi ismerőse van.

[1324] Csimby2006-08-29 20:01:33

Mivel az első ember előtt nem áll senki, ezért senkit sem ismer maga előtt, de ugyanannyit ismer maga előtt mint maga mögött, tehát senkit sem ismer. Ugyanígy az utolsó ember mögött sem áll senki, tehát nem ismer maga mögött senkit, tehát maga előtt sem ismer senkit. Vagyis az első és utolsó ember egyaránt nem ismer senkit. De ekkor a második ember senkit nem ismer maga előtt és az utolsó előtti ember senkit nem ismer maga után, tehát Ők sem ismernek senkit sem. Így tovább, senki sem ismer senkit... :-)

Előzmény: [1323] rizsesz, 2006-08-29 19:29:43
[1323] rizsesz2006-08-29 19:29:43

Egy újabb szórakoztató feladvány:

A zöldségesnél sorban állnak az emberek, és mindenki azt észrevételezi, hogy az előtte és mögötte álló emberek közül ugyanannyit ismer. Bizonyítsuk be, hogy az első és az utolsó embernek ugyanannyi ismerőse van.

[1322] lorantfy2006-08-28 17:31:59

Szia Barnus!

A feladatot szerintem úgy kell értelmezni, hogy a kocsi minden kereke azonos minőségű, csakhogy az előre szerelt kerekek 24 ezer, a hátulra szereltek 16 ezer km-t bírnak ki a különböző igénybevétel miatt. Mondjuk azért, mert ez a kocsi éppen hátsó kerék meghajtású.

Legyen a gumikon lévő réteg, ami lekophat 1 egység. Ekkor ezer km használat során az első kerékről 1/24, a hátsóról pedig 1/16 egység kopik le.

Használjuk x ezer km-ig a gumikat úgy ahogy fel vannak rakva, majd cseréljük fel az elöl és hátul lévő gumikat és használjuk még y ezer km-ig, úgy hogy mindegyikról lekopjon az egységnyi réteg. Tehát éppen elhasználódnak.

Az először elöl lévő gumik kopása: (1/24)x+(1/16)y=1

A először hátul lévőké: (1/16)x+(1/24)y=1

Közös nevező, összead után: 5(x+y)=96, vagyis max x+y= 19,2 ezer km-t mehetünk a gumikkal.

Hogy mikor kell cseréni, azt találd ki Te!

Előzmény: [1321] barnus, 2006-08-27 16:36:18
[1321] barnus2006-08-27 16:36:18

Sziasztok!

Van egy érdekes feladatom! A gépkocsira új gumikat szereltek. A hátsó gumik 16000 km megtételére alkalmasak, az elsők 24000 km-re. Mekkora maximális utat lehet megtenni ezekkel a gumikkal? Ha valaki tudja, legyen szíves írja!

[1320] Cckek2006-08-26 11:26:50

Ha már lehet feladatokat kitűzni akkor itt van néhány saját szerkesztésű feladatom az aritmetika köréből: 1)Határozzuk meg az m,n nullától különböző természetes számokat melyekre fennáll:

(\frac{m}{n})^m=(mn)^n

2)Oldjuk meg az

(x+y)m=(xy)n

egyenletet, ahol x,y,m,n\inN

3)Oldjuk meg az

(\frac{x}{y})^m=(xy)^n

egyenletet, ahol x,y,m,n\in N*

[1319] rizsesz2006-08-23 22:05:36

rendben :) de néha én is hadd legyek gyors és meggondolatlan :)

[1318] jonas2006-08-23 21:55:53

Nem két különböző körszelet összege? Az egyik a kör alakú karám szelete, a másik pedig annak a körnek, amibe a kecskét a kötél kényszeríti.

Előzmény: [1315] rizsesz, 2006-08-21 15:27:37
[1317] Vini2006-08-21 22:20:35

Kösz. Megtaláltam.

Előzmény: [1316] Hajba Károly, 2006-08-21 15:33:33
[1316] Hajba Károly2006-08-21 15:33:33

Lásd alább NadorP [349] hozzászólását.

Előzmény: [1314] Vini, 2006-08-21 15:00:37
[1315] rizsesz2006-08-21 15:27:37

hát, a kecske által lelegelt terült egy körszelet kétszerese. innen pedig nem mehet nehezen.

[1314] Vini2006-08-21 15:00:37

Sziasztok.

Egy érdekes feladattal találkoztam. Így szól: Egy egység sugarú kör kerületén leverünk egy cölöpöt és kikötünk hozzá egy kecskét. Mekkora legyen a kötél amivel a kecskét kikötöttük, ha azt szeretnénk, hogy az egység sugarú kör területének felét tudja csak lelegelni.

Ha valaki meg tudná oldani, az jó lenne, mert én nem boldogulok vele. Meg lehet ezt egyáltalán középiskolás tudással oldani? Kösz

[1313] Sirpi2006-08-01 22:52:17

Nem azt kéne feltenni, hogy P és Q relatív prímek? Amúgy az s1=1 simán feltehető, hiszen s homogén.

Előzmény: [1311] nadorp, 2006-08-01 10:51:04
[1312] jonas2006-08-01 12:59:53

Hmm. Furcsa. Akkor debuggolnom kell a bizonyítást.

Előzmény: [1311] nadorp, 2006-08-01 10:51:04
[1311] nadorp2006-08-01 10:51:04

Bocs, de valamit nem értek ( hacsak nem számoltam el valamit). Legyen s1=1, P=4, Q=6. Ekkor

s2=6  s4=264  s6=11520.

Ekkor s(4,6)=s2=6 de (s4,s6)=24

Előzmény: [1140] jonas, 2005-11-28 19:42:12
[1310] jonas2006-08-01 01:26:54

Még novemberben feladtam egy feladatot, amit senki nem oldott meg. Akkor ígértem két másik feladatot is, de ezeket nem tűztem ki érdeklődés hiányában, meg azért is, mert esetleg valaki bemondja, hogy szabad a gazda, és akkor szenvedhetek a megoldás leírásával. Mindhárom feladat arról a szemináriumról való, amelyre részben én gyűjtöttem a feladatokat.

Mivel most más okból leírtam ezek közül a második feladat megoldását, ezért ezt a feladatot most már nyugodtan feladhatom.

238. Az n-edik Catalan-szám  C_n = \frac{1}{n+1} \binom{2n}{n} . Ismert, hogy ez egyenlő azon lépcsős utak számával, amelyek a kockás papírra rajzolt n jobbra mutató és n felfele mutató kis nyílból áll (valamilyen sorrendben), és nem megy a végpontokat összekötő átló fölé, vagyis minden prefixében legalább annyi jobbra nyíl van, mint fölfele mutató nyíl.

Ezt tudva lássuk be, hogy bármely n-re

 
1 = \left|\matrix{
C_0 & C_1 & C_2 & \dots & C_{n-1} \cr
C_1 & C_2 & C_3 & \dots & C_n \cr
C_2 & C_3 & C_4 & \dots & C_{n+1} \cr
\dots \cr
C_{n-1} & C_n & C_{n+1} & \dots & C_{2n-2}
}\right|

Ez a determináns a Catalan-sorozatból képzett Hankel-determináns, amelynek minden mellékátlójában egyenlő elemek állnak.

Lássuk be azt is, hogy

 
1 = \left|\matrix{
C_1 & C_2 & C_3 & \dots & C_n \cr
C_2 & C_3 & C_4 & \dots & C_{n+1} \cr
C_3 & C_4 & C_5 & \dots & C_{n+1} \cr
\dots \cr
C_{n} & C_{n+1} & C_{n + 2} & \dots & C_{2n-1}
}\right|

Ha valaki nem boldogul, akkor a megoldás itt olvasható (angolul).

Az első feladat tehát az (1141) hozzászólásban olvasható, a harmadikat viszont csak ennek a megoldása után szeretném föladni, mert összefügg.

Előzmény: [1140] jonas, 2005-11-28 19:42:12
[1309] Virág2006-07-16 18:28:22

Köszönöm, hogy foglalkoztál vele. Megpróbálom átrágni magam rajta.... :o)) Hozzám most jutott el a feladat.

Előzmény: [1308] 2501, 2006-07-16 17:38:38
[1308] 25012006-07-16 17:38:38

Ez a kérdés a "Nehezebb matematikai problémák" témában is szerepel, a [296]-os hozzászólásban, de akkor addig gondolkoztam rajta, hogy végül teljesen elfelejtettem. :)

Bármely n hosszú dobássorozatot leírhatunk egy pozitív egészekből álló h1,h2,...,hm sorozatként, ahol hi az i-edik "egyszínű"-részsorozat hossza (tehát h1+h2+...+hm = n és m\len). (Minden ilyen összeg valójában két sorozatot ír le, mivel a "színek" megcserélésével a leírás nem változik.) Nevezzük ezeket a sorozatokat n felbontásainak!

Ebből a nézőpontból a kérdés úgy hangzik, hogy n-nek hány felbontása létezik, és ezek közül hányban szerepel k-nál nemkisebb tag (az eredeti kérdésre a válasz ezek aránya lesz). Ez utóbbit úgy is megkaphatjuk, hogy azokat számoljuk össze, amelyekben csak k-nál kisebb tagok szerepelnek, majd ezt az összesből kivonjuk.

Vezessük be az

f(a,b)~=~ \left\{\matrix{ a=0:~1 \cr\cr \sum_{i=1}^{min(a,b)} f(a-i,b) }\right.

függvényt, amely azt adja meg, hogy a-nak hány olyan felbontása van, amely b-nél nemnagyobb pozitív egészekből áll.

(A fenti definíció azt "mondja", hogy f(a,b) értéke 1, hogyha a = 0. Egyébként pedig úgy kapjuk meg, hogy a-ból "lecsípünk" 1-et, 2-t, ... b-t (egészen addig, amíg a el nem fogy), minden esetben megnézzük, hogy a maradéknak hányféle felbontása van, és ezeket összegezzük.

Úgy emlékszem, hogy valamelyik IOI/CEOI válogatóversenyen volt egy feladat, amely valahogy úgy hangzott, hogy "Hányféleképpen lehet felugrálni egy a fokú lépcsőn, ha legfeljebb b fokot tudunk egyszerre átugrani?", és ez volt a megoldás.)

Ezzel kifejezve az eredeti kérdésre a válasz: \frac{f(n,n)-f(n,k-1)}{f(n,n)}

Az "érmés" vonatkozásban szemlélve az f(n,n) kifejezést láthatjuk, hogy egyenlő 2n-1-nel.

Előzmény: [1303] Virág, 2006-07-16 11:29:29
[1307] Virág2006-07-16 16:20:33

Időközben megnéztem a F1-et, de érintőlegesen a feladaton is gondolkodtam.... :o) Nekem nagyon bonyolult, lehet, hogy nincs is erre konkrét képlet?

Előzmény: [1306] Sirpi, 2006-07-16 13:51:49
[1306] Sirpi2006-07-16 13:51:49

Mondjuk ez a képlet tuti nem jó. Ha k=1, az azt jelenti, hogy legalább egy hosszú egyformákból álló blokk van, ennek esélye 1, nem pedig n/2n-1. Ugyanúgy ha k=2, akkor az esély 1-1/2n-1, nem pedig a képletből adódó (n-2)/2n-1. Jó kérdés, hogy mi lehet a helyes képlet...

Előzmény: [1305] Virág, 2006-07-16 12:15:46
[1305] Virág2006-07-16 12:15:46

Jaj köszi! :o)) Sajna a matek nem igazán az erősségem, de a feladat érdekel.

Előzmény: [1304] Sirpi, 2006-07-16 12:09:14
[1304] Sirpi2006-07-16 12:09:14

Na, csak hogy rendesen meglegyen (még nem gondoltam bele, hogy jó-e a képlet, és eltartott vagy 2 percig, míg rájöttem, mi akar az ott lenni...). Tehát annak esélye, hogy lesz legalább k db. egyforma oldal n dobásból:

\frac{n-k+1}{2^{n-1}}

ami n=k-ra 1/2n-1-et ad (legalább ez a része tuti jó :-) ).

Előzmény: [1303] Virág, 2006-07-16 11:29:29

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]