Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[1478] jonas2006-11-01 17:45:29

238. Ez a feladat azért nem jó, mert túl sok megoldása van. Mondj még valami információt, különben nem tudunk választani.

A lehetséges megoldások:

20/10=2/1, 22/11=2/1, 24/12=2/1, 24/12=4/2, 26/13=2/1, 26/13=6/3, 28/14=2/1, 28/14=8/4, 30/10=3/1, 30/20=3/2, 32/16=2/1, 33/11=3/1, 33/22=3/2, 36/12=3/1, 36/12=6/2, 36/24=3/2, 36/24=6/4, 39/13=3/1, 39/13=9/3, 39/26=3/2, 39/26=9/6, 40/10=4/1, 40/20=4/2, 40/30=4/3, 42/21=4/2, 42/21=2/1, 44/11=4/1, 44/22=4/2, 44/33=4/3, 46/23=4/2, 46/23=6/3, 48/12=4/1, 48/12=8/2, 48/24=4/2, 48/24=8/4, 48/36=4/3, 48/36=8/6, 50/10=5/1, 50/20=5/2, 50/30=5/3, 50/40=5/4, 54/27=4/2, 55/11=5/1, 55/22=5/2, 55/33=5/3, 55/44=5/4, 60/10=6/1, 60/20=6/2, 60/30=6/3, 60/40=6/4, 60/50=6/5, 62/31=6/3, 62/31=2/1, 63/21=6/2, 63/21=3/1, 63/42=6/4, 63/42=3/2, 64/16=4/1, 64/32=6/3, 64/32=4/2, 65/13=5/1, 65/26=5/2, 65/39=5/3, 66/11=6/1, 66/22=6/2, 66/33=6/3, 66/44=6/4, 66/55=6/5, 68/34=6/3, 68/34=8/4, 69/23=6/2, 69/23=9/3, 69/46=6/4, 69/46=9/6, 70/10=7/1, 70/20=7/2, 70/30=7/3, 70/40=7/4, 70/50=7/5, 70/60=7/6, 75/15=5/1, 76/38=6/3, 77/11=7/1, 77/22=7/2, 77/33=7/3, 77/44=7/4, 77/55=7/5, 77/66=7/6, 80/10=8/1, 80/20=8/2, 80/30=8/3, 80/40=8/4, 80/50=8/5, 80/60=8/6, 80/70=8/7, 82/41=8/4, 82/41=2/1, 84/21=8/2, 84/21=4/1, 84/42=8/4, 84/42=4/2, 84/63=8/6, 84/63=4/3, 85/17=5/1, 86/43=8/4, 86/43=6/3, 88/11=8/1, 88/22=8/2, 88/33=8/3, 88/44=8/4, 88/55=8/5, 88/66=8/6, 88/77=8/7, 90/10=9/1, 90/20=9/2, 90/30=9/3, 90/40=9/4, 90/50=9/5, 90/60=9/6, 90/70=9/7, 90/80=9/8, 93/31=9/3, 93/31=3/1, 93/62=9/6, 93/62=3/2, 95/19=5/1, 96/16=6/1, 96/32=9/3, 96/32=6/2, 96/64=9/6, 96/64=6/4, 98/49=8/4, 99/11=9/1, 99/22=9/2, 99/33=9/3, 99/44=9/4, 99/55=9/5, 99/66=9/6, 99/77=9/7, 99/88=9/8,

Ezen kívül mindegyik megoldás úgy is, ha a számlálókat és nevezőket felcseréljük, van továbbá egy csomó olyan megoldás is, amikor a számláló egyenlő a nevezővel.

Előzmény: [1477] Python, 2006-11-01 15:17:36
[1477] Python2006-11-01 15:17:36

Bemutatkozásul egy, feladat, ma olvatam:

238. feladat Gondoltam egy törtre, a számlálója és a nevezője is kétjegyű. A számlálónak és a nevezőnek egy-egy jegyét elhagyva (pl.: 56-ból a hatost elhagyva 5-öt kapunk) a tört egyszerűsített alakját kapjuk. Melyik lehet ez a tört?

Meg egy saját:

239. feladat

Négyzetrácsos terepen él a matekkígyó. A négyzetrács minden mezőjén vagy nincs semmi, vagy élelem van, vagy fal, vagy a kígyó feje, vagy a kígyó testének egy szakasza. A kígyó (nem sárkány, így a) testén nincs elágazás. Egy időegységen belül:

I. Ha nincs élelem a terepen, valahonnan egy véletlenszerűen kiválasztódott üres mezőre egy adag élelem kerül.

II. Mozog a kígyó:

   1. A kígyó feje elmozdul egy oldalszomszédos mezőre, amelyen élelem van. Ekkor a kígyó feje helyén testszakasz jelenik meg, nyúlik a kígyó.

   2. A kígyó feje elmozdul egy oldalszomszédos üres mezőre. Ekkor mozog, minden testszakasza előrébb mozdul, az utolsó helyén üres hely alakul ki.

   3. Ha nem tud mozogni (1. v. 2.), rövidül, elveszti az utolsó testtáját.

a) Egy ilyen terepen:

 #   #   #   # 
 #           # 
 #  :)      # 
 #   #   #   # 

, ahol '#'=fal; ':)'=kígyó feje; ' '(space)=üres mező (A kígyónak még nincs teste, de tfh túléli...) elérheti-e a kígyó a 3 testszakasz+fej hosszt, és ha igen, optimális stratégia mellett legfeljebb hány időegység alatt? (Hányadik időegység végére eszi meg az utolsó élelmet?)

b) Terep:

 #   #   #   #   # 
 #   #       #   # 
 #      :)      # 
 #   #       #   # 
 #   #   #   #   # 

Kérdés ugyanaz, de itt csak 2 testszakasz+fej kell.

[1476] phantom_of_the_opera2006-11-01 11:52:35

Ezt én is felírtam, mikor próbálkoztam. Csak át kellett volna rendeznem az egyenletet?!?! El sem hiszem.

Előzmény: [1475] nadorp, 2006-11-01 09:21:25
[1475] nadorp2006-11-01 09:21:25

Ha pedig n\geq, akkor ...

Előzmény: [1474] nadorp, 2006-11-01 09:14:36
[1474] nadorp2006-11-01 09:14:36

Ha n=2, akkor a^2+\frac1{a^2}=\left(a+\frac1a\right)^2-2

Ha pedig n\geq3 ,akkor

a^{n+1}+\frac1{a^{n+1}}=\left(a^n+\frac1{a^n}\right)\left(a+\frac1a\right)-\left(a^{n-1}+\frac1{a^{n-1}}\right)

Előzmény: [1473] phantom_of_the_opera, 2006-10-31 23:28:19
[1473] phantom_of_the_opera2006-10-31 23:28:19

Tehát ha jól sejtem, akkor a jobb oldalon: \binom{k+1}{0}a^{k+1}+\binom{k+1}{k+1}\frac{1}{a^{k+1}} áll, a bal oldalon pedig \binom{k+1}{1}a^{k-1}+\binom{k+1}{k}a^{1-k}+\binom{k+1}{2}a^{k-3}+\binom{k+1}{k-1}a^{3-k} stb. Bakker. Végül is miután rájöttem, hogy a^{k-3}+\frac{1}{a^{k-3}} azért kell hogy egész legyen, mert k-3<k, és k-ig az indukciós feltétel miatt igaz, innen már rendben van. Csak mire ez eljutott a tudatomig...

Köszönöm szépen a szíves felvilágosítást.

Előzmény: [1472] Cckek, 2006-10-31 23:03:18
[1472] Cckek2006-10-31 23:03:18

Tehát ez az indukció egy formája. Az állítás igaz 1,2,..k-ra és ezekből kóvetkezik, hogy igaz k+1 re akkor igaz minden n-re P(k):a^k+\frac{1}{a^k}\in Z igaz \left(a+\frac{1}{a}\right)^{k+1}=\sum_{p=0}^{k+1}{C_{k+1}^pa^{k+1-2p}} Ebben a szélektől egyenlő távolságra levő tagokat csoportosítod majd az a^{k+1}+\frac{1}{a^{k+1}} tagon kivül átviszed a baloldalra.A baloldal egész lesz:)

Előzmény: [1471] phantom_of_the_opera, 2006-10-31 22:45:38
[1471] phantom_of_the_opera2006-10-31 22:45:38

Azzal próbálkoztam, ilyen (a+\frac1a)^n-szerű képletekkel, és meg is jelenik a keresendő tag, de nem csak n-nel, hanem az összes 1..n-ig terjedő hatvánnyal... ha tényleg olyan egyszerű, nem írnád le 1-2 sorban?

Előzmény: [1470] Cckek, 2006-10-31 22:36:37
[1470] Cckek2006-10-31 22:36:37

Egyszerűen indukcióval és a binomális képlettel. A megfelelő tagokat csoportosítsd.

Előzmény: [1469] phantom_of_the_opera, 2006-10-31 22:26:19
[1469] phantom_of_the_opera2006-10-31 22:26:19

Ismét a segítségeteket kérném a következő feladattal kapcsolatban: tegyük fel, hogy a valós, és a+\frac{1}{a} egész. Bizonyítsuk be, hogy ekkor bármely n természetes számra a^n+\frac{1}{a^n} is egész.

[1468] Cckek2006-10-31 22:06:02

x=1

Előzmény: [1467] Lóczi Lajos, 2006-10-31 21:50:29
[1467] Lóczi Lajos2006-10-31 21:50:29

Adjuk meg mindazokat az x>0 valós számokat, melyekre fennáll, hogy

xx2+1=e1-x3.

[1466] Lóczi Lajos2006-10-31 21:07:22

Egy jópofa feladat:

Adott \alpha valós szám esetén számítsuk ki a \lim_{n\to \infty} \cos(n \alpha) határértéket.

[1465] Cckek2006-10-31 19:52:14

Nos, én is utánnaolvasgattam, úgy tűnik a Jensen egyenlet megoldásai A(x)+a alakúak, ahol A(x) a Cauchy egyenlet megoldása, s mint ilyen lehet nemfolytonos is. Mindenesetre mindkettőtöknek köszönöm a segítségét, megint bebizonyosodott milyen könnyű függvényegyenletet szerkeszteni és milyen nehéz őket megoldani:).

Előzmény: [1462] Lóczi Lajos, 2006-10-31 11:51:03
[1464] Lóczi Lajos2006-10-31 14:44:53

Igen, a debreceni KLTE-s PDF szép leírás.

Még egy dolog eszembe jutott, már egyszer volt is szó róla itt a fórumon, a hatványsoros megközelítéssel kapcsolatban: tudjuk, hogy vannak C^{\infty}, de nem C^\omega függvények, vagyis olyan függvények, amelyek akárhányszor deriválhatók ugyan, de nem analitikusak, azaz nem fejthetők Taylor-sorba.

Egy ilyen függvény pl. az f(x):=e-1/x2, ha x\ne0 és f(0):=0, melyeket szokás "lapos" ("flat") függvényeknek is nevezni. Egyszerűen látható, hogy ennek 0-körüli Taylor-sora a konstans 0 függvény, ami nyilván nem állítja elő f-et semmilyen origó körüli intervallumon sem.

Szóval elvileg ilyen megoldása is lehet egy függvényegyenletnek, ezeket tehát hatványsorfejtéssel nem lehet megtalálni, noha a folytonossággal/deriválhatósággal nincs baj.

Előzmény: [1451] nadorp, 2006-10-30 08:56:12
[1463] nadorp2006-10-31 14:19:09

Köszi, még magyar nyelvű leírás is létezik. ( http://www.math.klte.hu/~szekely/FVEGY.pdf )

Előzmény: [1462] Lóczi Lajos, 2006-10-31 11:51:03
[1462] Lóczi Lajos2006-10-31 11:51:03

A választ Aczél János vagy Kuczma klasszikus függvényegyenletes könyvei bizonyára tartalmazzák. Az egyenlet neve egyébként Jensen-függvényegyenlet, érdemes megnézni, a neten erről van-e vmi "discontinuous" vagy "nowhere continuous" link, én konkrétat ezalatt a kis idő alatt nem találtam, talán azért, mert a kérdés nagyon klasszikus ízű. Intuitíve biztos vagyok benne, hogy ennek is van millió más megoldása. A konstrukció nyilván Hamel-bázissal kell történjen, a Cauchy-egyenlet mintájára. A megoldásfüggvények grafikonjai ilyen esetben az egész síkon sűrű ponthalmazok szoktak lenni.

Előzmény: [1460] nadorp, 2006-10-31 10:41:56
[1461] Lóczi Lajos2006-10-31 11:04:39

Érdekes, ezen a helyen azt olvasni, hogy mindegyik egységgyök kifejezhető iterált gyökképletekkel. Aki jól tudja az algebrát, az el tudja dönteni, igazat mond-e a cikk, én elhiszem neki.

Előzmény: [1457] Lóczi Lajos, 2006-10-31 10:03:05
[1460] nadorp2006-10-31 10:41:56

És mi a helyzet a g\left(\frac{x+y}2\right)=\frac{g(x)+g(y)}2 függvényegyenlettel. Feltesszük, hogy pld. x,y>0 ( ez az előző hozzászólásom hiányossága, mert nem zártam ki az x+y=0 lehetőséget az eredeti függvényegyenlet átalakításakor). Van ennek "csúnya" megoldása ?

Előzmény: [1456] Lóczi Lajos, 2006-10-31 09:43:51
[1459] Lóczi Lajos2006-10-31 10:08:10

Hogy a másik topikhoz is kapcsolódjak, ajánlom az érdeklődőknek, mint jó játékot sin (\pi/17) értékének megkeresését, ami a szabályos 17-szög megszerkesztéséhez kell.

Előzmény: [1458] Lóczi Lajos, 2006-10-31 10:04:18
[1458] Lóczi Lajos2006-10-31 10:04:18

Néhány konkrét érték itt található.

Előzmény: [1457] Lóczi Lajos, 2006-10-31 10:03:05
[1457] Lóczi Lajos2006-10-31 10:03:05

Legyenek p és q pozitív egészek. Mivel sin (p\pi/q) nem más, mint e^{i\pi p/q} képzetes része, és \big({e^{i\pi p/q}}\big)^{2q}=1, ezért sin (p\pi/q) vagy cos (p\pi/q) megkapható a z2q-1=0 algebrai egyenlet megoldása után. Ennek szorzatfelbontásán múlik a dolog, hogy az egyes tényezők gyökképlettel felírhatók-e, ez pedig elvben eldöntött kérdés -- a Galois-elmélet speciális eseteként bizonyára ismert a válasz q függvényében.

Előzmény: [1454] Yegreg, 2006-10-30 23:56:41
[1456] Lóczi Lajos2006-10-31 09:43:51

Persze ennek a függvényegyenletnek lehet, hogy vannak nemfolytonos, s így nemderiválható megoldásai is, ami lehetetlenné teszi az összes megoldás explicit felírását. (Analógia alapján, a Cauchy-féle f(x+y)=f(x)+f(y) egyenletről jutott eszembe, aminek "csúnya" megoldásából meglehetősen "sok" van.)

Előzmény: [1453] Cckek, 2006-10-30 14:19:43
[1455] nadorp2006-10-31 09:23:17

Ha f(x)=xg(x), akkor

xg(x)-yg(y)=(x-y)g(x+y)

Azaz tetszőleges t-vel

(x+t)g(x+t)-xg(x)=t.g(2x+t) és

xg(x)-(x-t)g(x-t)=t.g(2x-t) Összeadva

(x+t)g(x+t)-(x-t)g(x-t)=t(g(2x+t)+g(2x-t)) A baloldalra újra alkalmazva az eredeti egyenlőséget:

2t.g(2x)=t(g(2x+t)+g(2x-t)) Bevezetve a 2x+t=p, 2x-t=q jelölést

g(\frac{p+q}2)=\frac{g(p)+g(q)}2 minden p,q valós számra. Ebből úgy néz ki, hogy a függvény konvex és konkáv egyszerre, azaz valószínűleg egyenes. Ha viszont g(x) egyenes, akkor f(x) csak a már megtalált megoldás lehet.

Előzmény: [1453] Cckek, 2006-10-30 14:19:43
[1454] Yegreg2006-10-30 23:56:41

Nem kapcsolódik az aktuális témához, de itt kérdezem meg:

\sin(\frac{p}{q}\pi) mikor írható fel egész számokkal, alapműveletek és gyökök segítségével? (amúgy elvileg mindig algebrai)

Pl: sin(\frac{\pi}{12})=\frac{\sqrt2(\sqrt3-1)}{4}

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]