Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[1553] phantom_of_the_opera2006-11-29 12:31:57

Megpróbálkozom vele, köszönöm.

Előzmény: [1552] nadorp, 2006-11-29 08:26:58
[1552] nadorp2006-11-29 08:26:58

Írd fel x-et x=2^\alpha3^\beta{y} alakban, ahol y nem osztható 2-vel és 3-mal. Vizsgáld a következő 4 esetet:

1. \alpha=\beta=0

2. \alpha=0,\beta\geq1

3. \alpha\geq1,\beta=0

4. \alpha\geq1,\beta\geq1

és használd fel \varphi multiplikativitását

Előzmény: [1549] phantom_of_the_opera, 2006-11-28 21:42:31
[1551] Hajba Károly2006-11-29 00:49:24

Rendezzük az egyenletet:

\frac{1}{x}+\frac{1}{y}=\frac{1}{2005}

y=\frac{1*5*401*x}{x-2005}

Ahhoz, hogy y egész lehessen, a nevező értékének a számláló valamely részszorzatával kell egyenlőségben lennie. Ez 7 megoldást ad, melyből 3-3 'szimmetrikus'.

\matrix{x&y\cr 2006&4022030\cr 2010&806101\cr 2406&12030\cr 4010&4010\cr 12030&2406\cr 806010&2010\cr 4022030&2006\cr}

Előzmény: [1550] Csimby, 2006-11-28 23:01:50
[1550] Csimby2006-11-28 23:01:50

241.feladat

\frac{1}{x}+\frac{1}{y}=\frac{1}{2005}

Keressük a pozitív egész megoldásokat. (Lehet, hogy már volt, ez esetben sorry)

[1549] phantom_of_the_opera2006-11-28 21:42:31

Nem tudom, mennyire triviális a dolog, de nekem nem az. Van itt egy egyenlet: \varphi(2x)=\varphi(3x), ahol \varphi(x) az x-hez x-nél nem nagyobb relatív prímek számát jelöli. Van itt két képlet, elvileg ezeket kellene használni: \varphi(x)=\prod_{i=1}^r(p_i^{\alpha_i}-p_i^{\alpha_i-1})=n\prod_{i=1}^r\big(1-\frac{1}{p_i}\big) Tudnátok valami okosat mondani nekem erre?

[1548] Cckek2006-11-26 15:40:18

Most már egyszerű bebizonyítani azt is,hogy ha: \sum_{n\ge 1}a_n konvergens akkor

lim_{n\to \infty}\sum_{k=1}^{n}\frac{ka_k}{n}\to 0.

Gondolkozzunk a következő határértéken:

lim_{n\to \infty}\sum_{k=1}^{n}\frac{k^\alpha a_k}{n^\beta}, \alpha,\beta\in R

[1547] Cckek2006-11-26 15:29:03

nagyon szép megoldás.gratulálok:)

Előzmény: [1544] ScarMan, 2006-11-26 13:41:17
[1546] ágica2006-11-26 14:52:32

Pl. a_{n}=\frac{1}{n\ln{n}}

Előzmény: [1545] Lóczi Lajos, 2006-11-26 14:08:43
[1545] Lóczi Lajos2006-11-26 14:08:43

Adjunk példát olyan an>0 sorozatra, hogy nan nullsorozat, de \sum_{n=1}^\infty a_n divergens.

Előzmény: [1541] Cckek, 2006-11-26 11:52:55
[1544] ScarMan2006-11-26 13:41:17

Szerintem ebben az esetben a határérték csak 0 lehet.

Ha an-nek végtelen sok pozitív és negatív tagja van, akkor ez nan-re is igaz, de ekkor a két részsorozat közös határértéke csak a 0 lehet.

Ha valamelyik előjelű tagból csak véges sok van, akkor azokat hagyjuk el. Ha most csak negatív tagjaink maradtak, akkor szorozzuk az egészet -1-gyel. Most csak pozitív tagjanik vannak. Itt találunk egy szig. mon. csökkenően 0-hoz tartó részsorozatot, ez legyen aN. Nyilván \sum a_N is konvergens, mert pozitív tagokat hagytunk el. Ekkor a Cauchy-féle ekvikonvergencia tétel miatt \sum 2^Na_{2^N} sor is konvergens, ezért az általános tag 0-hoz tart. Ez NaN-nek részsorozata, ami viszont nan-nek részsorozata, tehát nan-nek 0 torlódási pontja.

Előzmény: [1543] Cckek, 2006-11-26 12:12:20
[1543] Cckek2006-11-26 12:12:20

Nagyon szép, az én hibám hogy nem követeltem meg: nan határérték létezzen.

Előzmény: [1542] jonas, 2006-11-26 12:06:44
[1542] jonas2006-11-26 12:06:44

Ez nem nehéz: a2k=2-k minden k egészre, a többi an=0. Ilyenkor 2ka2k=1 így nan-nek nincs határértéke, viszont  \sum_{1\le n} a_n = \sum_{0\le k} 2^{-k} = 2 .

Előzmény: [1541] Cckek, 2006-11-26 11:52:55
[1541] Cckek2006-11-26 11:52:55

Adjunk páldát olyan an sorozatra, melyre \sum_{n\ge 1}a_n konvergens, de nan határértéke nem 0.

[1540] Cckek2006-11-25 23:02:45

Oldjuk meg az egész számok halmazán a következő egyenletet: 2m-1=xn

[1539] jenei.attila2006-11-23 20:55:29

Valóban, ez esetben a hányados tényleg 2, azonban a lényegen mit sem változtat. Egyébként ez az eset is benne van az előző hozzászólásomban, l=0-val. Az ez előtti megjegyzésem szerint, minden páratlan számra igaz, hogy a \varphi(n) nem osztója n-nek, vagyis elég csak a páratlan számok reciprok összegéről belátni, hogy divergens. Ez pedig közismert. A legutóbbi megjegyzésem már egy erősebb állítást tartalmaz.

Előzmény: [1538] S.Ákos, 2006-11-23 20:09:58
[1538] S.Ákos2006-11-23 20:09:58

Igen, ez lenne a megoldás.De nem jó, mert 2k-ra is igaz, és itt a hányados 2. Megpróbálom helyesen:

Jelöljük azokat a számokat h1;h2;...vel, melyek Euler-féle \varphi-függvény értékére teljesül a következő \{\frac{n}{\varphi (n)}\}>0 ({}=törtrész). Mutassuk meg, hogy \sum_{i=1}^n\frac{1}{h_i} nem véges!

Előzmény: [1537] jenei.attila, 2006-11-23 13:44:38
[1537] jenei.attila2006-11-23 13:44:38

\varphi(n) csak akkor osztója n-nek (ez esetben a hányados 3), ha n=2k3l, ahol k>=1 és l>=0. Ezen n-ek reciprok összege viszont konvergens (vagyis nincsenek túl sokan), és 3/2-hez konvergál.

Előzmény: [1536] jenei.attila, 2006-11-23 12:01:16
[1536] jenei.attila2006-11-23 12:01:16

Sőt. A páratlan számokhoz relatív prímek száma páros, vagyis nem lehet osztója a páratlan számnak. A páratlan számok reciprok összege pedig divergál. Szerintem kérdezzük meg Ákost, pontosam mire gondolt. Ákos! A kérdés adott: légyszíves pontosítsd a feladatot. Köszi.

Előzmény: [1535] jenei.attila, 2006-11-23 11:24:47
[1535] jenei.attila2006-11-23 11:24:47

Én sem egészen értem a feladatot, de ha azon számok reciprok összegéről van szó, amelyeknek a náluk kisebb relatív prímek száma nem osztója, akkor a páratlan prímekre ez biztos igaz. Ezek reciprok összege, pedig valóban divergens, és következik belőle, hogy a szóban forgó számok reciprok összege is divergens. A prímekre vonatkozóan a bizonyítás nem túl könnyű, és lehet, hogy az Ákos által megfogalmazott gyengébb állítás bizonyítása könnyebb. Szerintem ez lehet a feladat.

Előzmény: [1534] Lóczi Lajos, 2006-11-23 10:15:36
[1534] Lóczi Lajos2006-11-23 10:15:36

De szerintem nem az \frac{n}{\varphi(n)} számokat kell összegezni, hanem az olyan \frac{1}{n}-eket, mely n-ekre teljesül az, ami.

Előzmény: [1532] nadorp, 2006-11-23 00:06:34
[1533] nadorp2006-11-23 00:10:27

p páratlan prím

Előzmény: [1532] nadorp, 2006-11-23 00:06:34
[1532] nadorp2006-11-23 00:06:34

Ha n=p2 ahol p prím, akkor \frac{n}{\phi(n)}=\frac{p}{p-1} nem egész és a \sum_{k=1}^\infty\frac{p_k-1}{p_k} sor divergens, hiszen az általános tag nem tart 0-ba

Előzmény: [1528] S.Ákos, 2006-11-22 20:00:39
[1531] Sirpi2006-11-22 22:53:47

Lehet hogy rosszul gondolom, de én az állítást úgy értelmeztem, hogy azon egészek reciprokösszege, melyekre teljesül, hogy nem osztja őket a nála kisebb relatív prímek száma, végtelen.

Előzmény: [1529] Lóczi Lajos, 2006-11-22 22:26:15
[1530] nadorp2006-11-22 22:41:06

Egy olyan permutáció, amely pontosan két elemet felcserél, a többit békén hagyja.

Előzmény: [1526] hobbymatekos, 2006-11-21 14:47:07
[1529] Lóczi Lajos2006-11-22 22:26:15

Csak 4 dolgot nem értek:

1. mi a különbség hi és Hi között

2. mit jelöl a \varphi függvény

3. mit jelöl a kapcsoszárójel

4. mire vonatkozik a limesz, ugyanis a szummában nincs már szabad változó

(Jobban érteném hi jelentését, ha látnám az első pár tagját.)

Előzmény: [1528] S.Ákos, 2006-11-22 20:00:39

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]