Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2112] jonas2007-06-25 08:58:38

Akkor nyertem.

Előzmény: [2093] jonas, 2007-06-18 22:38:23
[2111] rizsesz2007-06-25 01:39:46

Ajándék: http://www.komal.hu/verseny/2001-05/B.h.shtml B. 3469, asszem :)

Előzmény: [2110] Sirpi, 2007-06-22 23:50:30
[2110] Sirpi2007-06-22 23:50:30

Na jó, akkor lecsapom :-)

Pont elolvastam a feladatot, majd a vihar miatt jött egy 2 órás áramszünet, azalatt volt időm (többek közt ezt is) végiggondolni.

Tehát f(f(n))=f(n)+n és f(1)=2.

A Fibonacci-számokon végigugrálva az embernek elég hamar előjön az a sejtése, hogy f(n) = [\frac{\sqrt 5+1}2 n + \frac 12], vagyis a függvény lineáris (\sqrt5+1)/2-es szorzóval, egészre kerekítve.

És hogy ez miért jó? Legyen g(n) = \frac{\sqrt 5+1}2 n, vagyis a kerekítés nélküli függvény. Erre nyilván g(g(n)) - g(n) = \left( \frac{\sqrt 5+1}2 \right)^2 n - \frac{\sqrt 5+1}2 n = n

Másrészt minden n-re |f(n)-g(n)|<1/2, vagyis n-1<f(f(n))-f(n)<n+1, és mivel a különbség egész, ezért csak n lehet. Ezen kívül g(n+1)-g(n)=(\sqrt 5+1)/2, vagyis f(n+1)-f(n)>(\sqrt 5-1)/2 > 0, így f(n+1)-f(n)\geq1.

Előzmény: [2109] Cckek, 2007-06-22 19:38:21
[2109] Cckek2007-06-22 19:38:21

Felhívnám a tisztelt forumozók figyelmét, hogy a 2089-es hozzászolásomban kitűzött gyönyörűszép feladat még mindig megoldatlan:)

[2108] Sirpi2007-06-21 11:50:54

Szép elemzés!

Azért leírom azt is, hogy én mire jutottam. Talán kicsit egyszerűbb becsléseket használok, valamint semmilyen függvényvizsgálatra nincs szükség.

Legyen y:=n+x

\left(1 + \frac 1 {n(y-n)} \right)^y = e

És itt, mikor 1/y-edik hatványra emelem mindkét oldalt:

n(y-n) = \frac 1 {e^{1/y}-1}

n^2 - y n - \frac 1{1-e^{1/y}} = 0

n_{1,2}= \frac{y \pm \sqrt{y^2+4 / (1-e^{1/y})}}2

A két gyök közül az egyik lesz n, a másik xn. Az egyik gyök (a minuszos) 1 körül van, nézzük meg ezt alaposabban. Feltételezve, hogy y nagy, e1/y=1+1/y+1/(2y2)+O(1/y3), ahonnan

x_n = \frac 12 \cdot \left(y - \sqrt{y^2 - 4y + 2 + O(1/y)}\right) =

=\frac 12 \cdot \frac{y^2 - (y^2-4y+2+O(1/y))}{y + \sqrt{y^2 - 4y + 2 + O(1/y)}} \approx \frac {2y-1}{y + (y-2)}

Ez pedig éppen az x_n \approx 1+\frac {1/2}{y-1} becslést adja, ahonnan szintén látszik az 1/2-es határérték. Viszont kihasználtam, hogy ha n\to\infty, akkor y\to\infty, ezt még annyival meg kell támogatni, hogy mivel a két gyök összege y, ezért valamelyik a kettő közül legalább y/2, válasszuk ezt n-nek, a másikat pedig xn-nek.

* * *

Mindamellett azért is írtam le ezt az egészet, mert az az érdekes dolog látszik belőle, hogy ha nem n és xn lenne a feladatban, hanem x és f(x), akkor bejönne egy új gyök, hiszen az első lépésnél, a hatványozásnál az alap lehet épp negatív is, ha a kitevő (y) páros egész szám. Ekkor:

n^2 - y n - \frac 1 {1 + e^{1/y}} = 0

Ennek pedig egy pozitív (n), és egy negatív (xn) gyöke van. Viszont az sose fordulhat elő egyszerre, hogy y páros egész és n is egész, de ha n tetszőleges valós szám lehet, ami tart a végtelenbe, akkor valóban kapunk egy új gyököt:

x_n = \frac 12 \cdot \left( y - \sqrt{y^2 + 4 / (1 + e^{1/y})} \right)

Itt most e1/y\approx1 triviális becslést alkalmazva

x_n \approx \frac 12 \cdot \frac {y^2-(y^2+2)}{y + \sqrt{y^2+2}} \approx -\frac 1{2y}

Szóval ha n nem feltétlen egész, akkor van egy másik (negatív) sorozat is xn-re (ilyenkor az alap -1 közelében van).

Előzmény: [2106] Lóczi Lajos, 2007-06-21 03:16:23
[2107] Cckek2007-06-21 08:21:59

Hiába... Le a kalappal:)

Előzmény: [2106] Lóczi Lajos, 2007-06-21 03:16:23
[2106] Lóczi Lajos2007-06-21 03:16:23

Használjuk fel a pontosabb x-x2/2<ln (1+x)<x-x2/2+x3/3 egyenlőtlenséget. Ebből arra következtethetünk, hogy xn az

\frac{1}{3n^3 x^3} - \frac{1}{2n^2 x^2} + 
  \frac{1}{n x} - \frac{1}{n + x}=0

és az

 - \frac{1}{2n^2 x^2} + 
  \frac{1}{n x} - \frac{1}{n + x}=0

egyenletek (1-hez közeli) gyökei között van. Ez egy másod- és egy harmadfokú egyenlet, a megoldóképleteik felírhatók. Az ezekben szereplő négyzet- és köbgyököket a binomiális tétellel lehet sorbafejteni, amiből végül megkapjuk, hogy mind az alsó-, mind a felső becslése xn-nek 1+\frac{1}{2n}+O(\frac{1}{n^2}), ha n\to\infty.

Előzmény: [2104] Lóczi Lajos, 2007-06-21 01:34:29
[2105] Lóczi Lajos2007-06-21 01:52:59

A numerikus kísérletek azt mutatják, hogy

n(x_n-1)\to\frac{1}{2}, ami az eddigi sejtésektől (limesz=1) eltérő eredmény.

Előzmény: [2104] Lóczi Lajos, 2007-06-21 01:34:29
[2104] Lóczi Lajos2007-06-21 01:34:29

A kérdéses xn sorozat az \ln(1+\frac{1}{n x_n})-\frac{1}{n+x_n}=0 egyenlet gyöke.

Bizonyos mennyiségű számolással (első- és második deriváltak vizsgálata, határérték a 0-ban és a végtelenben, stb.) belátható, hogy ennek az egyenletnek minden, elég nagy n-re (pl. n>10) csak 1 gyöke van, az is 1 és pl. 2 között. Ez azért segít, mert ekkor használható az x-\frac{x^2}{2}<\ln(1+x)<x egyenlőtlenség (0<x<1). Így az eredeti egyenlet xn gyöke beszorítható két egyszerű egyenlet gyöke közé. Ebből kapjuk pl., hogy

\frac{-1 + 2n^2}{4\left( -1 + n \right) n} + 
  \frac{{\sqrt{\frac{1 + 4n^2 - 8n^3 + 4n^4}
        {{\left( -1 + n \right) }^2n^2}}}}{4}<x_n<\frac{n}{n-1},

ami maga után vonja, hogy elég nagy n-ekre

1+\frac{1}{2n}<x_n<1+\frac{2}{n}.

Tehát az (xn-1)na sorozatnak csak a=1 esetén lehet véges, nemnulla limesze (ha egyáltalán létezik).

Finomabb ötleteket fog igényelni annak kiderítése, hogy (xn-1)n melyik pozitív számhoz tart.

Előzmény: [2103] Lóczi Lajos, 2007-06-19 22:38:34
[2103] Lóczi Lajos2007-06-19 22:38:34

Egyelőre azt sem tudom belátni, hogy az xn sorozat egyáltalán miért pozitív.

Előzmény: [2097] nadorp, 2007-06-19 09:55:00
[2102] Cckek2007-06-19 19:48:23

\epsilon_n\to \frac{1}{2}

Előzmény: [2101] Sirpi, 2007-06-19 17:37:36
[2101] Sirpi2007-06-19 17:37:36

Dehogy kell igaznak lennie. (1+1/n)n\toe, de ettől még nem igaz, hogy ez a sorozat konstans e. Sőt, ha már itt tartunk, akkor egy segédfeladat (bár már szerepelt itt az oldalon, úgy emlékszem).

\varepsilonn úgy van definiálva, hogy (1 + 1/n)^{n + \varepsilon_n} = e. Mi \varepsilonn határértéke?

Előzmény: [2100] lorantfy, 2007-06-19 17:16:22
[2100] lorantfy2007-06-19 17:16:22

A sorozatot megadó \left(1+\frac{1}{nx_n}\right)^{n+x_n}=e egyenletnek mindig igaznak kell lenni. Tehát n\rightarrow\infty esetén nxn=n+xn

Előzmény: [2099] nadorp, 2007-06-19 12:39:23
[2099] nadorp2007-06-19 12:39:23

Nem akarok kötözködni, de attól, hogy az an és bn sorozatokra \lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=1, nem következik, hogy an-1 és bn-1 ugyanolyan gyorsan tart 0-ba. ( pld a_n=\frac{n}{n-1}, b_n=\frac{2n-1}{2n-2}). Tehát csak arra akartam rákérdezni, hogy a feladatban szereplő xn sorozat miért helyettesíthető a \frac{n}{n-1} sorozattal ?

Előzmény: [2098] lorantfy, 2007-06-19 11:59:09
[2098] lorantfy2007-06-19 11:59:09

Kedves Lajos!

Én úgy gondolkodtam, hogy az a és b megadásához minket az xn sorozat csak határértékben érdekel, vagyis nyugodtan helyettesíthető az \frac{n}{n-1} sorozattal, különben első egyenlet nem lenne igaz.

Az \frac{n^a}{n-1} határértéke pedig a<1-nél 0, a=1-nél 1, a>1-nél végtelenbe megy.

Előzmény: [2095] Lóczi Lajos, 2007-06-19 00:18:52
[2097] nadorp2007-06-19 09:55:00

Az xn>1 is viszonylag egyszerű ( n\geq2), azaz \lim_{n\to\infty}x_n=1, a baj az, hogy ebből az xn-1 nagyságrendje nem látszik.

Előzmény: [2096] Cckek, 2007-06-19 08:43:35
[2096] Cckek2007-06-19 08:43:35

Nagyon könnyű levezetni hogy x_n<\frac{n}{n-1} és innen származhatnak intuitív úton- gondolom - a kapott a,b értékek.

Előzmény: [2095] Lóczi Lajos, 2007-06-19 00:18:52
[2095] Lóczi Lajos2007-06-19 00:18:52

Kedves László, adj egy kis segítséget a megoldáshoz :)

Előzmény: [2086] lorantfy, 2007-06-10 18:05:44
[2094] Cckek2007-06-18 22:54:14

Természetesen észrevehető, hogy a függvény mit csinál a Fibonacci számokkal. Persze felirható azért zártabb alakú példénya is.

Előzmény: [2093] jonas, 2007-06-18 22:38:23
[2093] jonas2007-06-18 22:38:23

Nézd meg, hogy az A007067 sorozat megoldás-e.

Előzmény: [2089] Cckek, 2007-06-18 18:33:49
[2092] Cckek2007-06-18 22:13:50

...és ha létezik ilyen függvény adjunk példát rá:))

Előzmény: [2089] Cckek, 2007-06-18 18:33:49
[2091] jonas2007-06-18 22:07:31

f(f(x))-es függvényegyenletből csak egy jut eszembe: f:R\toR differenciálható, mindenütt pozitív, f'(x)=f(f(x)). (Úgy emlékszem, nincs megoldása, de utánanézhetek, ha kell.)

Előzmény: [2089] Cckek, 2007-06-18 18:33:49
[2090] Cckek2007-06-18 18:35:07

Reméltem, hogy ti adtok nekem útmutatást:)

Előzmény: [2088] Lóczi Lajos, 2007-06-14 21:55:32
[2089] Cckek2007-06-18 18:33:49

Egy nagyon érdekes feladattal találkoztam a minap. Létezik-e olyan f:N\toN függvény melyre f(1)=2,

f(f(n))=f(n)+n, és f(n)<f(n+1)?

[2088] Lóczi Lajos2007-06-14 21:55:32

Kérünk egy kis útmutatást.

Előzmény: [2087] Cckek, 2007-06-11 21:06:11

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]