Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2212] Lóczi Lajos2007-08-06 20:56:35

Az eredmény (borzasztó nagy valószínűséggel) 6. A gép szimbolikus válasza csúnya hipergeometrikus függvényt és gammafüggvényt tartalmaz, de minden numerikus közelítés 6-ot ad.

Lássuk a levezetést és a tanulságokat! :)

Előzmény: [2209] Cckek, 2007-08-04 20:12:02
[2211] Csimby2007-08-04 23:55:24

Mivel tudjuk, hogy zn is rajta van a komplex egységkörön (hiszen z rajta van), ezért zn szerintem már csak kétféle lehet, amiket írtam, z konjugált vagy -z hiszen ha z=a+bi akkor az y=-b egyenes legfeljebb két pontban metszi a komplex egységkört, -a-bi-ben és a-bi-ben.

Előzmény: [2204] Cckek, 2007-08-04 17:00:39
[2210] Cckek2007-08-04 20:28:35

Megadom az én megoldásomat is:

z a zn+z+1=0 egyenlet egységmoduluszú gyöke akkor \overline{z}=\frac{1}{z} is gyöke, tehát

\frac{1}{z^n}+\frac{1}{z}+1=0\implies \implieszn+zn-1+1=0, a két egyenletet kivonva egymásból kapjuk zn-1-z=0 tehat zn-2=1. De 0=zn+z+1=zn-2.z2+z+1=z2+z+1 tehát z harmadrendű egységgyök, tehát zn-2=z3k=1\impliesn=3k+2

Előzmény: [2208] HoA, 2007-08-04 19:54:04
[2209] Cckek2007-08-04 20:12:02

Így már szép. Egy másik szép feladat, mely érdekes következmenyekre világít rá:

\int_0^2(\root{3}\of{x^2+2x}+\sqrt{x^3+1})dx

Előzmény: [2208] HoA, 2007-08-04 19:54:04
[2208] HoA2007-08-04 19:54:04

Elnézést, pongyola voltam. Természetesen az 1 abszolút értékű, \pm2\pi/3 argumentumú komplex számra gondoltam. Tehát z = e^{\pm i2\pi/3} ; z^n = e^{\mp i2\pi/3} = e^{\pm i2n\pi/3} Innen \pm2n\pi/3=\mp2\pi/3+2k\pi és innen mint [2205]-ben

Előzmény: [2206] Cckek, 2007-08-04 19:13:43
[2207] HoA2007-08-04 19:34:06

Ugyanez egy kicsit másképp: n = 3k + 2 esetén zn+z+1=z3k+2+z+1=z2+z+1+z3k+2-z2=(z2+z+1)+z2(z3k-1) és itt a 3. primitív egységgyökök mindkét tagnak gyökei.

Előzmény: [2200] Csimby, 2007-08-04 15:26:15
[2206] Cckek2007-08-04 19:13:43

Helló. Ne haragudj de becsszóra nem értem. Mit jelöl a z=\pm \frac{2\pi}{3}?

Előzmény: [2205] HoA, 2007-08-04 19:02:57
[2205] HoA2007-08-04 19:02:57

|z| = 1 esetén zn+z+1=0 azt jelenti, hogy zn , z és 1 szabályos háromszöget alkot, tehát z = \pm \frac{2\pi}{3} , z^n = \mp \frac{2\pi}{3} . Másrészt  z^n = \pm \frac{2n\pi}{3} = \mp \frac{2\pi}{3} + 2k\pi

\pm2n\pi=\mp2\pi+6k\pi ; \pmn=\mp1+3k

n = 3k - 1 vagy -n = 3k +1 , n = -3k -1 , ami ugyanazt jelenti: n mod 3 = 2

Előzmény: [2197] Cckek, 2007-08-04 12:53:25
[2204] Cckek2007-08-04 17:00:39

Hogy a képzetes részek egymás ellentettjei ebből nem következik, hogy z és zn egymás konjugáltjai. Probáld inkább a z egységmoduluszú gyök akkor \overline{z}=\frac{1}{z} is gyök utat:)

Előzmény: [2202] Csimby, 2007-08-04 16:43:26
[2203] Csimby2007-08-04 16:45:02

Pontosabban ez csak a "másik" irány biz.-ja, az "egyik" irány ebből nem következik.

Előzmény: [2202] Csimby, 2007-08-04 16:43:26
[2202] Csimby2007-08-04 16:43:26

Másik biz., amiből kijön a másik irány is: t.f.h. van 1 absz. értékű z megoldás. Ekkor zn is 1 absz. értékű. Mivel z+zn=-1, ezért képzetes részeik egymás ellentettjei, vagyis z és zn egymás konjugáltjai vagy pedig z=-zn. A z=-zn eset kilőve, hiszen akkor z+zn nem -1 hanem 0. Marad az, hogy egymás konjugáltjai, ekkor viszont -1/2 a valós részük (hiszen összegük -1). És máris megkaptuk, hogy z csak 3. primitív egységgyök lehet. Ebből már következik, hogy n=3k+2 hiszen n=3k esetében zn=1, n=3k+1 esetében zn=z és csak n=3k+2 esetben lesz zn egyenlő z konjugáltjával.

Előzmény: [2201] Cckek, 2007-08-04 15:29:15
[2201] Cckek2007-08-04 15:29:15

Szép:)

Előzmény: [2200] Csimby, 2007-08-04 15:26:15
[2200] Csimby2007-08-04 15:26:15

n=3k+2 esetén zn+z+1=(1+z+z2)(1-z2+z3-z5+...+zn-2) ahol a jobb oldal második tényezőjében váltakozó előjellel szerepelnek z növekvő hatványai és azok maradnak ki amelyekben a kitevő 3k+1 alakú. Mivel 1+z+z2-nek a 3. primitív egységgyökök gyökei és ezek 1 abszolútértékűek, ezért az egyik irány kész van.

Előzmény: [2198] Csimby, 2007-08-04 15:09:43
[2199] Cckek2007-08-04 15:12:00

Igen! |z|=1

Előzmény: [2198] Csimby, 2007-08-04 15:09:43
[2198] Csimby2007-08-04 15:09:43

"egységnyi moduluszú" = 1 abszolútértékű?

Előzmény: [2197] Cckek, 2007-08-04 12:53:25
[2197] Cckek2007-08-04 12:53:25

Egy olimpiászfeladat:

Bizonyítsuk be, hogy a zn+z+1=0 egyenletnek akkor és csakis akkor van egységnyi moduluszú komplex gyöke, ha n 3-mal való osztási maradéka 2.

[2196] Hajba Károly2007-08-02 08:04:16

OK. Akkor teljes szigorral csak n=7-re ismerünk megoldást.

Alacsony n-re szerintem nincs, ha van, akkor az magasabb n-re lesz. Ez minimum n>7, mivel n=7-re vért izzadva leltünk megoldást.

Előzmény: [2194] Csimby, 2007-08-02 00:56:23
[2195] Lóczi Lajos2007-08-02 02:14:23

A számítógépbe csak beírom, hogy DSolve, lásd pl. itt.

Amúgy meg a legyegyszerűbb módszer a következő. (Nem írok se vektort, se mátrixot.)

Adott tehát az y'=y+2z és z'=-y+3z rendszer. Kifejezed pl. az elsőből z-t y-nal és beírod a másodikba. Kapsz egy valós, homogén, lineáris, másodrendű egyenletet y-ban. A karakterisztikus polinom két gyöke \lambda1,2=2\pmi, vagyis (használva az Euler-formulát) két lineárisan független megoldás az y_{1}(x)= e^{Re(\lambda_1)x}\cos((Im \lambda_1)x) és y_{2}(x)= e^{(Re \lambda_1)x}\sin((Im \lambda_1)x). Emiatt y(x)=c1.y1(x)+c2.y2(x). Innen z(x) már csak egy szimpla visszahelyettesítés. (Láthatod, hogy nem betű szerint ugyanaz jött ki, mint amit a gép adott, de könnyen látszik, hogy c1 és c2-t alkalmasan átnevezve mégsem kaptunk mást.)

Előzmény: [2193] Willy, 2007-08-02 00:35:58
[2194] Csimby2007-08-02 00:56:23

Szia! Jah, igen ez csak nem kilépő, bocs ha félreérthető voltam. De szerintem az izgalmas kérdés az, hogy van-e 2n-2-nél kevesebb szakaszból álló megoldás.

Előzmény: [2189] Hajba Károly, 2007-08-01 21:14:07
[2193] Willy2007-08-02 00:35:58

Megkérhetnélek mindkettőtöket, hogy mutassátok meg, ti egész pontosan hogyan oldanátok meg a feladatot (a gépesnek is nagyon örülnék). (Ugyanis se diffegyenletet nagyon, se komplex függvénytant nem tanultam még suliban, csak saját szakállamra; és nem nagyon látom át a helyzetet.)

Előre is köszönöm :-)

Előzmény: [2192] Lóczi Lajos, 2007-08-02 00:20:51
[2192] Lóczi Lajos2007-08-02 00:20:51

De legegyszerűbb a számítógépet megkérdezni, ami szerint

y(x)=e^{2x}\left( \cos (x) - \sin (x) \right) c_1 + 2e^{2x}\sin (x) c_2

és

z(x)=- e^{2x}\sin (x) c_1   + 
  e^{2x}\left( \cos (x) + \sin (x) \right) {c_2}.

Előzmény: [2183] Cckek, 2007-07-29 20:18:25
[2191] Cckek2007-08-01 21:26:43

Bocs Willy, az előző hozzászolásomban a mátrix:

A=\left(\matrix{0&1\cr -2&-2}\right).

Elfelejtettem, hogy megváltoztattam a feladat adatait:)

[2190] Cckek2007-08-01 21:19:55

Helló Willy.

Igen, valami ilyesmi jött ki nekem is vizsgán, bár kissé bonyolultabban. y=C_1e^{\lambda_1t}v_1+C_2e^{\lambda_2}v_2

Ahol \lambda1=-1+i,\lambda2=-1-i sajátértékek és

v_1=\left(\matrix {-1-i\cr 2}\right),v_2=\left(\matrix{ -1+i\cr 2}\right) sajátvektorok. Na ezt kéne valóssá alakítani.

Előzmény: [2186] Willy, 2007-08-01 02:36:51
[2189] Hajba Károly2007-08-01 21:14:07

De ez ugye csak nem-kilépő? Mert nálam a visszazárt annyit tesz, hogy a kiindulási pontba zár vissza. Azaz nem lehet a gráf egyetlen pontja sem páratlan élű, csak páros. Nálam. :o)

Ha a bal alsóból [1,1] indulsz, akkor csak a [4,4]-be érkezhetsz. Erre én is ráleltem, csak én nem hosszabbítottam meg a már meglévő vonalig. Az [1,1]-be kellene vissza is érkezni.

Előzmény: [2188] Csimby, 2007-08-01 20:36:28
[2188] Csimby2007-08-01 20:36:28

A bal alsó sarokból kell indulni.

Előzmény: [2172] Hajba Károly, 2007-07-28 13:28:21

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]