Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2257] rizsesz2007-09-03 16:40:14

a., a 3 kitérő él azt jelenti, hogy 3 közös ponttal nem rendelkező élre gondolok. ha a hagyományos kockavázat nézzük, akkor egy él alulról, egy oldalsó él és egy felülről, úgy, hogy semelyik két élhez nem tartozik közös csúcs; forgatással és tükrözéssel egybevágóság erejéig egy ilyen élhármas létezik.

b., igazából véges henger, olyan értelemben, hogy megoldást a kocka síkjában keresünk.

Előzmény: [2256] HoA, 2007-09-03 15:25:28
[2256] HoA2007-09-03 15:25:28

Kérdések:

a) a 3 kitérő él úgy értendő, hogy 3 különböző irányú? b) egy éltől adott távolságra lévő pontok halmaza végtelen henger vagy két félgömbbel lezárt véges henger?

Előzmény: [2255] rizsesz, 2007-09-02 20:52:05
[2255] rizsesz2007-09-02 20:52:05

Helló! Nem tudom, hogy hanyadik feladat sajna, de itt a szöveg:

Egy kocka 3 kitérő élétől egyenlő távolságra levő pontok halmaza micsoda?

[2254] ilozagrav2007-08-26 21:30:33

Sziasztok!

Komplex elemű mátrix főátlón kívüli elemeit rögzítjük. Bizonyítsuk be, hogy megválaszthatók a főátlóbeli elemek úgy, hogy a mátrix sajátértékei előre adottak,és hogy a mátrix sajátértékei az adott értékek legyenek.

[2253] Q2007-08-26 09:25:09

Köszi mindenkinek, rajta vagyok.

[2252] Lóczi Lajos2007-08-26 00:57:11

De a http://mathworld.wolfram.com/NewtonsIteration.html és http://mathworld.wolfram.com/LogisticMap.html oldalak igazi gyöngyszemek, amelyekből nemhogy órai előadást, de egész éves kurzust lehet tartani...

Előzmény: [2251] Lóczi Lajos, 2007-08-26 00:53:37
[2251] Lóczi Lajos2007-08-26 00:53:37

Ebben a topikban több érdekes, rekurzióval kapcsolatos feladatot (és megoldást) találsz. (Javaslom, állítsd 200-ra a megjelenített hozzászólások számát és akkor elég hamar megtalálod az összeset.)

Előzmény: [2247] Q, 2007-08-25 21:33:53
[2250] Cckek2007-08-25 22:10:01

Rajta:D

Előzmény: [2249] ilozagrav, 2007-08-25 21:49:48
[2249] ilozagrav2007-08-25 21:49:48

Szia!

Lelőjjem vagy maradjon még? Üdv Zoli

Előzmény: [2246] Cckek, 2007-08-25 17:10:12
[2248] ilozagrav2007-08-25 21:48:28

Szia!

Pl. Pell egyenlet és másodrendű rekurzív sorozatok kapcsolata, elmehetsz a vektorterek irányába is,számtalan dolog lehet.Fibonacci sorozat stb.Nagy az irodalma üdv Zoli

Előzmény: [2247] Q, 2007-08-25 21:33:53
[2247] Q2007-08-25 21:33:53

Sziasztok! Tudtok valami érdekes feladatot rekurzív sorozatokkal kapcsolatban? Órai előadáshoz kéne.

[2246] Cckek2007-08-25 17:10:12

Bizonyitsuk be, hogy

\int_{0}^{\pi}sign(\sin((n+1)\theta))\cos^k\theta \sin \theta d\theta=0,\forall k=\overline{0,n-1}

[2245] ilozagrav2007-08-24 14:14:31

Szia!

Én kreatív ötleteket várok.Egyébként egy normális halmazelmélet könyvben le van írva a válasz: Egy A halmaz számossága a legkisebb A-val ekvivalens rendszám. A kérdés az lenne inkább hogy találunk-e ilyen operációkat ami az előzőből nem triviálisan keletkezik.

Előzmény: [2244] jonas, 2007-08-24 13:56:56
[2244] jonas2007-08-24 13:56:56

Ezt gonosz dolog feladatként feladni. Szerintem csak az tudja megoldani, aki hallotta már a megoldást.

Előzmény: [2243] ilozagrav, 2007-08-24 13:40:44
[2243] ilozagrav2007-08-24 13:40:44

Sziasztok!

Két halmaz ekvivalens akkor és csak akkor, ha létezik közöttük bijekció. Bizonyítható hogy ez tényleg ekvivalenciareláció. Egy f operációt kompatibilisnek mondunk egy ekvivalenciarelációval ha

f(A) = f(B) <=> A ekvivalens B - vel

Adjunk meg olyan operációt amely kompatibilis a halmazokon értelmezett ekvivalenciával, azaz tegyük lehetővé a számosság matematikai értelmezését!

Várom az ötleteket üdv.Zoli

[2242] Csimby2007-08-24 10:15:23

Hogy mi "szokásos" és mi nem, az sztem attól függ, hogy hol vagyunk :-). Gimnáziumban például amikor elkezdtünk arról beszélni, hogy Q és akkor ez test és két művelet +, * stb. Akkor "a>b"-t úgy definiáltuk, hogy "a>b" acsa. ha a-b\in Pozitív. (Nincsen akkor-és-csak-akkor nyíl?) Ahol a Pozitív halmaz halmaz definíciójára már nem emlékszem, de talán lehet azon Q-beliek halmaza melyek előállnak (1+1+...+1)/(1+1+...+1) alakban. Ez nyilván működik Z-ben is. Hogy R-ben ezt hogy lehetne megoldani, azt nem tudom, lehet hogy nem is lehet. És ha így definiáltuk, akkor 1>0-n nincs mit bizonyítani. Persze elegánsabb és számomra nagyon tanulságos volt amit te írtál, hogy, felvesszük a rendezés axiómáit is és azt mondjuk, hogy a>b acsa. a\geb és a\neqb, de pl. a gimiben, noha a többi axióma szerepelt nálunk (igaz, talán csak Z-re) a rendezés axiómái kimaradtak és ezt a fent leírt módon oldottuk meg.

Előzmény: [2241] Lóczi Lajos, 2007-08-23 23:22:24
[2241] Lóczi Lajos2007-08-23 23:22:24

Ha az eredeti kérdés a valós számok szokásos axiómarendszerére vonatkozik, akkor egy lehetséges válasz a következő.

Az 1/6-os axióma szerint létezik egy (-1)-gyel jelölt elem, ami az 1 additív inverze. Nézzük, mennyi (-1)(-1). Azt állítom, hogy 1. Az additív inverz egyértelműsége miatt (tessék igazolni az axiómákból!) ehhez elég megmutatni, hogy (-1)(-1)+(-1)=0. Az 1/5-ös axióma miatt a bal oldal= (-1)(-1)+(-1).1, az 1/3-as axióma miatt viszont ez =(-1)[(-1)+1]=(-1).0, a (-1) definíciója miatt. Most igazolom, hogy minden valós x-re x.0=0. Nézzük az x.0+x.0 kifejezést. Az 1/3-as axióma miatt ez utóbbi = x.(0+0)=x.0, az 1/4-es axióma miatt. Tehát x.0+x.0=x.0. Most adjuk hozzá mindkét oldalhoz a -(x.0) számot, azaz az 1/6-os miatt létező additív inverzét x.0-nak. Azt kapjuk, hogy x.0=0, az additív inverz definíciója miatt. Speciálisan: (-1).0=0 és ezzel beláttam, hogy (-1)(-1)=1.

Most érdemes belátni (tessék igazolni az axiómákból!), hogy egy x elem (-x) additív inverze ugyanaz, mint (-1).x. Ezután az 1/2-es miatt kapjuk, hogy x.x=(-x).(-x).

Most lássuk be azt, ha x\ge0, akkor az additív inverzre fordított reláció áll fenn. Valóban: 0=x+(-x)\ge(-x) a 3/1-es és a \ge tranzitivitása miatt.

Most megmutatom, hogy akármilyen x valós elemre x.x\ge0. Két eset van (melyik axióma miatt?). Ha x\ge0, akkor x.x\ge0 igaz a 3/2-es miatt. Ha x\le0, akkor a fentiek alapján x.x=(-x)(-x) és most 3/2-es axióma.

Viszont ekkor 1.1\ge0 is teljesül. De 1/5-ös szerint 1=1.1, tehát 1\ge0. Viszont tudjuk 1/5 alapján, hogy 1\ne0, így a > definíciója miatt 1>0.

Jó játék, nem? :-)

Esetleg tudna valaki lényeges rövidítést adni a fenti axiómaszámozást használva?

Előzmény: [2238] Csimby, 2007-08-23 21:48:33
[2240] jonas2007-08-23 22:32:57

Hasonló kérdés: bizonyítsuk be, hogy 1+1=2.

Szerintem is teljesen attól függ, hogy definiáljuk a természetes számokat.

Előzmény: [2232] Gyöngyő, 2007-08-23 12:30:27
[2239] Sirpi2007-08-23 21:56:59

Azt, hogy a fv. hol vesz fel racionális értékeket, szerintem se érdemes túlzottan vizsgálni. Annyi bizonyos, hogy a folytonosság miatt a minimuma és maximuma között felveszi az összeset.

Már az x3-x fv.-ről se látom kapásból, hogy milyen irracionális értékekra racionális (ehhez az x3-x-p/q=0 harmadfokú egyenletet kell megoldani mindenféle p,q értékekre).

Előzmény: [2226] Cckek, 2007-08-22 12:21:54
[2238] Csimby2007-08-23 21:48:33

Szerintem, ha ennyire lemegyünk, az alapokig, hogy 1>0, akkor tisztáznunk kell a definíciókat, hogy tudjuk mit használhatunk a bizonyítás során. Nem gondoltam utána, de nem vagyok benne biztos, hogy pl. CCkek bizonyítása nem használja-e fel valahol, hogy 1>0.

Előzmény: [2236] Lóczi Lajos, 2007-08-23 18:31:13
[2237] jonas2007-08-23 19:17:14

Szerintem arccos(ncos x) rondább, nem polinom, és biztosan nincs annyi érdekes tulajdonsága.

Előzmény: [2234] Cckek, 2007-08-23 14:12:01
[2236] Lóczi Lajos2007-08-23 18:31:13

A teljességre valóban nincs szükség.

A felvetésednek mindazonáltal nem igazán látom értelmét: legyen összesen 2 elemünk, és egy ">"-gyel jelölt reláció. Az egyetlen igaz állítás (axióma) a rendszerünkben pedig legyen az, hogy "1>0". A jelek jelentését firtatni itt értelmetlen. :)

Előzmény: [2235] HoA, 2007-08-23 17:00:28
[2235] HoA2007-08-23 17:00:28

Úgy látom, Gyöngyő nem érti, mennyire jogos Csimby felvetése. Szerintem a feladatot valahogy úgy kéne megfogalmazni: Mi az a minimális fogalom, definíció, axióma halmaz, amiből adódik, mit jelent a "0", az "1" és a ">" , és amiből be lehet bizonyítani az állítást? Úgy sejtem, a teljesen rendezett kommutatív test fogalmára nincs szükség.

Előzmény: [2232] Gyöngyő, 2007-08-23 12:30:27
[2234] Cckek2007-08-23 14:12:01

Most épp Csebisev polinomokkal foglalkozgatom, tahát Tn(x)=cos (narccosx) polinom. Mi a helyzet forditva? arccos(ncos x) hogyan néz ki? Vagy általánosan melyek azok a bijektív függvények melyekre

f(n.f-1(x)) polinom?

[2233] Lóczi Lajos2007-08-23 13:24:58

Pontosabban:

"Tehát a kérdésem az VOLT hogy hogyan..."

hiszen meg lett válaszolva :)

Előzmény: [2232] Gyöngyő, 2007-08-23 12:30:27

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]