Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2513] Cckek2007-12-26 01:02:06

Ha A+A=A\impliesA=A-A=O(n) az-az az "idempotencia feltételed" csak a nullmátrixra teljesül.

Előzmény: [2509] hobbymatekos, 2007-12-25 23:25:13
[2512] Lóczi Lajos2007-12-26 00:25:21

itnincs = nincs

Előzmény: [2511] Lóczi Lajos, 2007-12-26 00:23:20
[2511] Lóczi Lajos2007-12-26 00:23:20

Az idempotens mátrix definíciójában itnincs benne az, hogy A+A=A kellene legyen. Az identitásmátrix idempotens.

Továbbra sem értelek tehát.

Előzmény: [2509] hobbymatekos, 2007-12-25 23:25:13
[2510] hobbymatekos2007-12-26 00:04:37

Tényleg:-) De azért beirom. Ez jobb korlát és 2n>-1 re jó.

\frac {2}\pi \frac {\sqrt{\pi }}2 
\frac {\Gamma( \frac{2n+1}2)}{\Gamma( \frac{2n}2+1)}\le \frac{1}{n\sqrt{3}}

Itt a baloldal az előző szinuszos integrál(persze ugyanannyi az érték koszinusszal is.)

Előzmény: [2507] ágica, 2007-12-25 21:42:29
[2509] hobbymatekos2007-12-25 23:25:13

Def.: A idempotens ha A+A=AA=A.

A feltétel szerint P, Q hermitikus és idempotens volt. P=QP egyenlőség tetszőleges nem elfajuló (detP vagy detQ nem nulla) mátrixokra pl: Q=I lenne, de I nem idempotens.

Előzmény: [2508] Lóczi Lajos, 2007-12-25 21:42:39
[2508] Lóczi Lajos2007-12-25 21:42:39

Nem egészen értem, mit írsz.

"Def.: A idempotens ha A+A=AA=A A feltétel szerint P, Q hermitikus és idempotens volt P=QP egyenlőség tetszőleges nem elfajuló (detP vagy detQ nem nulla) mátrixokra pl: Q=I lenne, de I nem idempotens."

Át tudnád ezt fogalmazni magyarosabbra? Összefolynak a részek. Amúgy miért veszed bele az idempotens definíciójába az összeget?

Előzmény: [2505] hobbymatekos, 2007-12-25 17:05:24
[2507] ágica2007-12-25 21:42:29

Akkor már n=2-re sem teljesülne.

(A feladat egyébként már körül volt járva ugyanebben a témában, [1369]-től kezdve.)

Előzmény: [2506] hobbymatekos, 2007-12-25 20:38:26
[2506] hobbymatekos2007-12-25 20:38:26

Szerintem a jobboldal

\frac{1} {n\sqrt {3}}

Előzmény: [2500] Lóczi Lajos, 2007-12-23 23:42:57
[2505] hobbymatekos2007-12-25 17:05:24

Egyelőre csak a következőt sikerült igazolnom: P=PQ=QP Ez segédtételből következik: Ha P és Q hermitikus, akkor PQ=QP(kommutativitás) továbbá P ill. Q idempotens (a feltételek szerint) Def.: A idempotens ha A+A=AA=A A feltétel szerint P, Q hermitikus és idempotens volt P=QP egyenlőség tetszőleges nem elfajuló (detP vagy detQ nem nulla) mátrixokra pl: Q=I lenne, de I nem idempotens. Hermitikus, idempotens mátrixokra Q=P.

Előzmény: [2399] Lóczi Lajos, 2007-10-22 12:32:28
[2504] Cckek2007-12-24 16:57:02

Kellemes, boldog és békés Karácsonyt minden tisztelt forumozónak. ...és a piával csak Lebesque mértékkel:D

[2503] Lóczi Lajos2007-12-24 02:16:45

Igen, a feladat érdekessége abban van, hogy indukcióval közvetlenül nem jön ki, viszont egy nála erősebb állítás igen: ha a jobb oldalra \frac{1}{\sqrt{3n+1}}-et írunk, az indukció már végigmegy.

Előzmény: [2501] Csimby, 2007-12-24 01:26:49
[2502] rizsesz2007-12-24 01:30:03

pedig van indukciós, csak sajna nem saját :( úgyhogy nem dobom be a közösbe (viszon Csimby megoldása szép!).

más kérdés: az első 2n pozitív egész számból kiválasztunk k. mekkora k értéke, ha tudjuk, hogy k-ra igaz, hogy van a k szám között 3 olyan, amelyek közül az egyik a másik kettő összege, továbbá az is igaz, hogy ez már k-1 esetén nem teljesül?

Előzmény: [2501] Csimby, 2007-12-24 01:26:49
[2501] Csimby2007-12-24 01:26:49

Először persze megpróbáltam indukcióval, hamár arról volt szó, de úgy nem jött ki. Viszont felhsználva, hogy: \frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2}\le\frac{(2n)!!}{(2n+1)!!} Bizonyítandó állításnak \frac{(2n)!!}{(2n+1)!!}\le\frac{1}{\sqrt{3n}}\cdot\frac{\pi}{2}-t kapjuk. Ami már kijön indukcióval. Amit felhasználtam az meg abból jön ki, hogy az a_{2n}:=\int_0^\frac{\pi}{2}\sin^{2n}x dx=\frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2} ill. a_{2n+1}:=\int_0^\frac{\pi}{2}\sin^{2n+1}x dx=\frac{(2n)!!}{(2n+1)!!} sorozat monoton fogyó.

Előzmény: [2500] Lóczi Lajos, 2007-12-23 23:42:57
[2500] Lóczi Lajos2007-12-23 23:42:57

Igaz-e, hogy ha n pozitív egész, akkor

\frac{1}{2}\cdot \frac{3}{4}\cdot \frac{5}{6}\cdot ... \cdot  \frac{2n-1}{2n}<\frac{1}{\sqrt{3n}} ?

[2499] Cckek2007-12-22 16:22:42

Itt van egy, bár eléggé egyszerű. Legyen:

z\inC,  |z|=1,  A\inM2(R),  TR(A)=1,  det(A-zI2)=0.

Ekkor An csak A és z függvénye.

Előzmény: [2497] Gyöngyő, 2007-12-22 11:08:52
[2498] Cckek2007-12-22 15:11:39

Cauchy bizonyitása a számtani- mértaniközép egyenlőtlenségre. Ez a Wikipédián is megvan úgy emlékszem.

Előzmény: [2497] Gyöngyő, 2007-12-22 11:08:52
[2497] Gyöngyő2007-12-22 11:08:52

Sziasztok!

Segítséget szeretnék kérni! Az lenne a kérdésem,hogy hol találok olyan feladatokat,amiben a teljes indukció kicsit furcsa modon kerül elő vagy nem teljesen követi a megszokott utat!

Köszönettel: Zsolt

[2496] Enkidu2007-12-17 10:42:35

Teljesen igazad van! Elnézést a Mortimer-Moriarty hibáért!

Előzmény: [2495] Cckek, 2007-12-14 22:43:57
[2495] Cckek2007-12-14 22:43:57

Krimirajongóként, anélkül hogy kötekedni akarnék, megkérdem, hogy nem Moriarty professzorról van szó? Amúgy nagyon érdekes feladat, én léggyel meg pókhálóval tudom, a pók útolérheti a legyet ha a pókháló tartalmaz háromszöget.

Előzmény: [2492] Enkidu, 2007-12-12 12:45:22
[2494] jonas2007-12-14 10:58:24

Nyilván nem, hiszen ha x=y=z=1 akkor y/x=z/y=1 és xyz=1 tehát f(1,1)=1; viszont ha x=y=z=2 akkor y/x=z/y=1 de xyz=8 így f(1,1)=8 is lenne.

Előzmény: [2493] Lóczi Lajos, 2007-12-14 00:04:44
[2493] Lóczi Lajos2007-12-14 00:04:44

Van-e olyan kétváltozós f függvény, hogy f\left(\frac{y}{x},\frac{z}{y}\right)=xyz, azaz kifejezhető-e xyz, mint y/x és z/y függvénye?

[2492] Enkidu2007-12-12 12:45:22

A megoldásod teljesen jó! A 15-ös korlátot csak azért adtam, mert matekórán játszottunk párat gyerekekkel, én sem tudom pontosan, mennyi a legkevesebb lépés (ha Mortimer jól játszik); a lényeg az, hogy ha Holmes áthalad Rejkjavikon, akkor (állandóan közelítve Mortimerhez) 7-8 lépés alatt elkapja.

Szóval ez tényleg csak egy egyszerű játék volt, és nagyon hasonló a megoldása (Rejkjavik nélkül a gráf 2-színezhető lenne - Rejkjavikkal a kromatikus szám 3) is mint a korábbi példának, azért gondoltam, hogy megmutatom.

Sziasztok!

Előzmény: [2491] HoA, 2007-12-11 14:19:06
[2491] HoA2007-12-11 14:19:06

A Holmes vs. Mortimer feladatban [2479] ezek után világos, hogy ha Rejkjavikot egyik sem érinti, Holmes Pétervárról, Mortimer Párizsból indul és Holmes lép elsőnek, akkor Holmes soha sem léphet abba a városba, ahol éppen Mortimer van. ( Fordítva igen, de Mortimernek ez nyilván nem célja. ) A megoldásnak tehát szükséges feltétele, hogy egyikük érintse egyszer Rejkjavikot. ( Precízen: A két ellenfél rejkjaviki utazásainak száma különböző paritású legyen ) . A továbbiakat nem látom. Hol jön be a 15-ös lépéskorlát? Biztos, hogy nincsenek szigorúbb feltételek? Pl. Mortimer nem mehet kétszer ugyanabba a városba? Az elfogás vége is világos: Ha Mortimer "A" városban van mikor Holmesnak sikerül "B" városba lépnie úgy, hogy "A" minden szomszédja egyben "B" -nek is szomszédja, Holmes nyert. Ilyen például A = Madrid B = Párizs. De hogyan kényszerítheti Mortimert ilyen lépésre? Szabad a gazda.

Előzmény: [2479] Enkidu, 2007-12-05 13:31:00
[2490] HoA2007-12-07 15:17:43

Én [2476] -ban arra céloztam, hogy ha behúzzuk az AM élt, G gráfunkból egy szép szimmetrikus G' gráfot kapunk, ahol minden csúcs fokszáma 3 vagy 4, és a 8 éves is könnyen észreveheti, hogy 3-adfokú csúcsnak csak 4-edfokú szomszédja van és viszont. Innen adódik a 8 piros - 6 zöld alapú megoldás. És persze ha G' -nek nincs Hamilton útja, akkor G-nek sem lehet.

Előzmény: [2489] Csimby, 2007-12-07 02:21:30
[2489] Csimby2007-12-07 02:21:30

A színezésből látszik, hogy két piros ill. két zöld csúcs között nem megy él, hanem él csak piros és zöld csúcsok között megy. Így bármely úton/körön felváltva kell hogy következzenek a piros ill. zöld csúcsok. De mivel piros csúcsból 8, zöld csúcsból pedig csak 6 van így váltakozó piros-zöld sorozatból legfeljebb csak 13 hosszút tudunk csinálni. Azt pedig, hogy a gráf kétszínnel színezhető - vagyis páros - lehetett megsejteni abból, hogy benne minden kör páros volt, ez a két állítás ekvivalens. Persze csak abból, hogy a gráf páros még nem következik hogy nincs benne Hamilton út, ehhez még kellett, hogy a két osztály (piros és zöld csúcsok) elemszámának a különbsége 2.

Előzmény: [2488] szbela, 2007-12-07 01:38:08

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]