Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]  

Szeretnél hozzászólni? Jelentkezz be.
[2645] Sirpi2008-05-15 22:39:14

Szerintem ezt a négyzetfelosztást mindig meg lehet csinálni akkor is, ha a két kis négyzet (egész) oldalhosszát előírjuk (a és b). Hiszen ekkor egy ab(a2+b2) oldalhosszú négyzet biztos kitölthető, méghozzá úgy, hogy a felső részében vannak az a oldalhosszú kis négyzetek (b(a2+b2a db.), alatta pedig a b oldalúak (a(a2+b2b db.). Sőt, gyakran kevesebb is elég lehet, pl. ha a és b nem relatív prím. Viszont azt nem tudom, hogy ennél kevésbé rendezett megoldások is vannak-e kisebb elemszámmal.

Előzmény: [2643] Lóczi Lajos, 2008-05-15 21:51:46
[2644] jonas2008-05-15 22:23:31

A négyzetes nem nehéz.

Egyszerűen választunk egy (s,a,x) számhármast, amelyre 1<s,x és 0<x<a2, és a2-x=s2x. Ezután egy nagy négyzetet felosztunk a2 közepes négyzetre, majd x darab közepes négyzetet egyenként s2 darab kis négyzetre.

Több megfelelő számhármas is van, az ábra a (2,5,5)-nek megfelelő megoldást mutatja, de jó például a (2,10,20),(3,10,10),(7,10,2),(2,15,45),(4,17,17),(2,20,80),(3,20,40),... is.

Ha 4s2\lex, akkor megtehetjük azt is, hogy egy (vagu több) közepes négyzetet kis négyzetek közé fáziseltolással csempészünk be, ahogy a második ábra mutatja.

Előzmény: [2643] Lóczi Lajos, 2008-05-15 21:51:46
[2643] Lóczi Lajos2008-05-15 21:51:46

Hát akkor tűzzük ki :) Az is érdekes kérdés, hogy határértékben mi a fekete/fehér kockák aránya, az optimális esetben, ha a négyzetrács mérete végtelenhez tart. Amúgy ezt a feladatot idén adták fel orosz 6.-osoknak, egy olimpiai előkészítőn. A közölt megoldás is 28-at ad meg (egyébként Python ábráján a jobb szélsőt), persze nem bizonyítja az optimalitást. (A feladat pontozása érdekes: aki 25 autót rak be, 1 pontot kap, ezen felül viszont minden újabb autó plusz 2 pontot ér :-)

A másik, hasonlóan érdekes feladat: osszunk fel egy négyzetet kétféle méretű négyzetre, úgy, hogy a két fajtából egyforma számú darab szerepel. Kíváncsi vagyok, hogy van-e lényegében másfajta elrendezés, mint amit közöltek.

(A többi 4 feladat triviális volt ezekhez képest.)

Előzmény: [2642] Python, 2008-05-15 19:55:25
[2642] Python2008-05-15 19:55:25

A 28 nálam is megvan és szerintem nincs ennél jobb, mivel elég sokat szórakoztam, és 28-at többfélét találtam, de annál jobbat nem (3 példányt felteszek ábrában). Érdekes lenne a feladatot általánosabban is kitűzn, tehát n×n-es parkolóra.

Előzmény: [2640] Káli gúla, 2008-05-15 14:50:44
[2641] Róbert Gida2008-05-15 16:48:03

Jók a számok. Lehet találni egy formulát, ami ilyen számokat állít elő, feltéve, hogy néhány szám prím a formulában. Ez hasonló a Carmichael számokat gyártó képlethez, ami persze nem véletlen, hiszen ahogy írtad ezek mind azok. Ha egy ikerprím sejtéshez hasonló sejtés igaz, akkor máris végtelen sok ilyen szám van.

Előzmény: [2638] Enkidu, 2008-05-15 12:41:43
[2640] Káli gúla2008-05-15 14:50:44

1-et tudtam javítani (27 -> 28), nem tudom, lehet-e jobbat csinálni.

Előzmény: [2639] Sirpi, 2008-05-15 13:06:23
[2639] Sirpi2008-05-15 13:06:23

A példaábrához képest (ami elsőre optimálisnak tűnt számomra) 3-at tudtam javítani (24 -> 27), nem tudom, lehet-e jobbat csinálni.

Előzmény: [2637] Lóczi Lajos, 2008-05-13 12:14:17
[2638] Enkidu2008-05-15 12:41:43

Ha jól számoltam az első két szám: 1729 és 2465 (a harmadik a 15841). A "bizonyításom" egy program, ami végigfut a Carmichael-számokon (csak ilyenek lehetnek a feladatban kitűzött számok).

Hogy miért éppen a Carmichael-számok?! Azok az n számok, melyekre minden lnko(a,n) = 1 esetén an-1\equiv1(modn) azok éppen a prímek és a Carmichael-számok. Prímek esetén viszont van olyan a<n, amely primitív gyök, erre az a-ra nem teljesülhet a feladatban kitűzött egyenlőség.

Most hirtelenjében csak azokon a számokon fut a progi, amik beleférnek a szabvány 16-bites (max 32000) egész szám fogalmába. Arra nem merek tippelni, hogy véges, vagy végtelen sok ilyen szám van.

Üdv!

Előzmény: [2633] Róbert Gida, 2008-04-28 19:11:45
[2637] Lóczi Lajos2008-05-13 12:14:17

Egy 7x7-es autóparkolóba legfeljebb hány darab autót helyezhetünk el, ha azt akarjuk, hogy bármelyik ki tudjon jönni a többitől függetlenül? (A kijárat bal fölül van, és egyszerre mindig csak 1 autó mozog. 1 autó 1 teljes négyzetet foglal el és csak a négyzetrács mentén mozoghatnak függőlegesen vagy vízszintesen.)

[2636] Róbert Gida2008-05-12 02:06:51

Ah, megvan a pontos érték: 1-\frac {\Pi ^2}{12} Érdemes felbontani az integrált y<x és y>x részekre. Mivel az integrálandó x,y-ban szimmetrikus ezért elég az egyiket kiszámolni, például y<x-et, ekkor az egyik tag persze: frac(y/x)=y/x, a másik miatt viszont a [0,x] intervallumot fel kell osztani. Végén kapunk egy kellemes szummát, amit egy apró trükkel lehet explicit alakban felírni. Bár a \Pi2 gondolom így sokat segít.

Előzmény: [2635] Róbert Gida, 2008-05-12 01:35:06
[2635] Róbert Gida2008-05-12 01:35:06

Ha valaki ki akarná számolni: Monte Carlo módszere kb. 0.177-et ad az integrálra, 1 millió pontot használva az egységnégyzetből, ez így kb. 1/sqrt(1000000)=1/1000-ed pontosságot jelent.

Előzmény: [2634] Gyöngyő, 2008-05-12 00:58:33
[2634] Gyöngyő2008-05-12 00:58:33

Mennyi a következő integrál értéke: Ahol a kapcsos zárójel törtrészt jelent:


\int_0^{1} \int_{0}^{1} \left\{ \frac{x}{y} \right\} \left\{ \frac{y}{x} \right\} dx dy

Üdv.: Zsolt

[2633] Róbert Gida2008-04-28 19:11:45

Találjuk meg a két legkisebb pozitív egész 1-nél nagyobb páratlan N számot, melyre teljesül, hogy: minden lnko(a,N)=1 esetén a^{\frac {N-1}{2}}\equiv 1 mod N teljesül! Mi a sejtésünk: végtelen vagy véges sok ilyen N szám van?

[2632] Róbert Gida2008-04-28 18:32:20

Fazekas felvételi feladatsora a 6 osztályos spec. mat. tagozatra.

[2631] Róbert Gida2008-04-27 00:52:00

Egy megoldás rá: Legyen s=a1+an rögzített, ekkor, ha s fix, akkor a jobb oldal is fix. De mi lesz a bal oldal maximuma (rögzített s esetén)? Legyen x=a2...ak és y=an-k+1...an-2, a bal oldalon elég az első és utolsó tagot nézni:

max(a1*x+y*an)=max(x,y)*s, ha s=a1+an, és a maximum felvétetik olyan helyen (is), ahol a1=0 vagy an=0, ezt beírva az eredeti feladatot kapjuk meg csak n tag helyett (n-1) taggal. Azaz leszállhatunk, egészen n=k-ig, ami a triviális eset, hiszen ez éppen a számtani-mértani egyenlőtlenség.

Egyenlőség viszont sokféleképpen lehet, például k=1-nél mindig egyenlőség van. n=3,k=2-nél pontosan akkor, ha a1-a2+a3=0

Előzmény: [2630] Gyöngyő, 2008-04-26 22:06:26
[2630] Gyöngyő2008-04-26 22:06:26

Szisztok!

Legyen k és n pozitiv egészek és k=<n, és legyen a1,a2,...an nemnegativ valós számok. Bizonyítsuk be,hogy


a_1a_2...a_k + a_2a_3....a_{k+1} + ... + a_{n-k+1}a_{n-k+2}...a_{n} \leq \left(\frac{a_1 + a_2 + ... +a_n}{k}\right)^k

[2629] Ratkó Éva2008-04-21 13:16:07

Kedves CD iránt érdeklő és tájékozott fórumozók! Az, hogy a KöMaL eltűnt a sulinet honlapról, sajnos nem a mi hatáskörünk: higgyétek el, mi is azt szeretnénk, ha még mindig ott lenne. Volt velük egy ötéves szerződésünk, melyet a lejárta után nem óhajtottak megújítani, és jelenleg is ez az állapot áll fenn. Valóban, szkennelt formában elérhetőek a számok a mi honlapunkon, teljesen ingyen. (Itt egy másik oldal is, ahol elérhetők, méghozzá oldalanként: db.komal.hu/scan ) Ahhoz, hogy a) vagy egy hasonlóan működő honlapot gyártsunk b) a CD-t frissítsük vagy internetes vagy új CD-kiadás formájában, egy jó programra és ehhez pénzre van szükségünk. A HEFOP pályázat arról szólt, hogy adatokkal feltöltjük az adatbázisunkat.

Egyébként a pályázatnak 2006 decemberében vége volt, azóta még nem kaptuk meg az általunk kifizetett pénz 20%-át. Tehát adott egy egész szépen feltöltött adatbázis, amivel még 2 teendő van - ez folyik most- : 1.) a szöveghez az ábrákat bevinni - ezt elkezdték, de nem fejezték be - 2.) ellenőrizni kell, hogy tényleg jók-e a bevitt szövegek - ugyanis az adatbevitelkor sok hiba keletkezhetett.

Valóban eladtunk kb. 500 Cd-t, ebből számoljátok ki hány ember fizetése (minimálbér) finanszírozható!? Hány hónapig? (persze a CD nyomása és elkészítése és az azt működtető valóban nem egészen felhasználóbarát program megíratása sem volt ingyen - amúgy épp ezért szándékoznánk valami mai igényeknek megfelelőbb feldolgozást) Szóval elnézést, de ma csak itt tartunk. Egyébként teljesen igazatok van, már rég működnie kéne ennek az archívumnak valamilyen formában. A jó hír az, hogy legalább a KöMaL kiadására és a KöMal-honlap és FÓRUM működtetésére épp hogy futja a MATFUND (és az adófizetők) pénzéből :-)

Oláh Vera

Előzmény: [2626] Cogito, 2008-04-13 14:11:36
[2628] sakkmath2008-04-13 16:17:36

Szia Gyöngyő!

Úgy tűnik, az első öt jól felírt sorozattag után a sok szám és vessző között eltévedtél, s talán ezzel magyarázható, hogy több hibával írtad fel a sorozat hátralévő tagjait. Megpróbálom hiba nélkül leírni a sorozat első 11 tagját, remélem, sikerül: 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211, 11131221133112132113212221, ...

Végül nézzük a rekurziós képzési szabályt; hogyan kapjuk a 11. tagot a tizedikből: 1db 1, 1db 3, 1db 2, 2db 1, 1db 3, 3db 1, 1db 2, 1db 3, 2db 1, 1db 3, 2db 1, 2db 2, 2db 1.

Üdv: sakkmath

Előzmény: [2627] Gyöngyő, 2008-04-13 14:36:32
[2627] Gyöngyő2008-04-13 14:36:32

Sziasztok!

Van egy jópofa feladatom!

folytasd:

1,11,21,1211,111221,31,2211,13112221,1113213211,31131211321, 132113111231131211....

üdv: Zsolt

[2626] Cogito2008-04-13 14:11:36

A KöMaL-szerkesztőség erről csak ennyit ír. E szűkszavú híren kívül illett volna azt is közölni, hogy a mostani állapot mégis meddig tart, illett volna megindokolni a "nem elérhető"-ség okát, s végül, de nem utolsó sorban, illett volna elnézést is kérni a legalább másfél éve tartó, bosszantó helyzetért.

Szerencsére van egy lehetőség, hogy saját cd-t készítsünk a KöMaL első 100 évének archívumáról. A hogyanhoz klikk ide. (Egy 523 MB-os ZIP-állományt kell/lehet letölteni...)

Az utóbbi linken a 2005 nyarán megjelent "Irány a Nobel-díj KöMaL 1994-2003" című CD-ről többek között ez olvasható: " ... minden vásárlót regisztrálunk, és számukra a jövőben lehetővé tesszük, hogy a folyamatosan bővülő tartalmat a meglevő CD-jük frissítéseként letölthetik erről a web-címről ...". A közlemény így zárul: "Az összes megjelent füzet digitalizálása körülbelül 3 évet vesz majd igénybe."

Ezek alapján joggal kérdezhetik a regisztrált felhasználók, hogy:

1) Az eltelt csaknem 3 év alatt miért nem lehetett semmiféle frissítést letölteni?

2) Az óvatos "körülbelül 3 év" hány év lesz a valóságban?

Előzmény: [2625] kdano, 2008-04-11 19:47:08
[2625] kdano2008-04-11 19:47:08

Azóta letörölte a sulinet a kömal-archívumot. De legalábbis nem elérhető (ld. http://www.komal.hu/lap/archivum.h.shtml )

Előzmény: [2624] HoA, 2008-04-10 11:57:47
[2624] HoA2008-04-10 11:57:47

A régebbieket nézegetve akadtam erre a hozzászólásra. Géza, neked sikerül itt elolvasni Csirmaz László cikkét? Ha nem, miért nem?

Előzmény: [63] Kós Géza, 2003-11-13 14:25:51
[2623] Lóczi Lajos2008-03-23 22:31:49

A [2615]-beli jelölésekkel a tetraédertérfogatokra egyébként ezek adódnak: \frac{abc}{6}, \frac{bcd}{6}, \frac{acd}{6}, \frac{abd}{6}, \sqrt{\left(\frac{abc}{6}\right)^2+
\left(\frac{bcd}{6}\right)^2+
\left(\frac{acd}{6}\right)^2+
\left(\frac{abd}{6}\right)^2}.

Előzmény: [2622] Lóczi Lajos, 2008-03-23 22:25:16
[2622] Lóczi Lajos2008-03-23 22:25:16

Elegáns. Egy másik megközelítés lehet, ha a Róbert Gida által felvázolt módon expliciten kiszámoljuk a szóban forgó 5 darab, közönséges 3-dimenziós tetraéder térfogatnégyzetét: ez nagyon egyszerű pl. (a Héron-képletet is általánosító) Cayley-Menger determinánsok segítségével.

Előzmény: [2621] Káli gúla, 2008-03-23 21:16:30
[2621] Káli gúla2008-03-23 21:16:30

T_i=T_{n+1}\cos\phi_i {\rm ,~ igy~~} \sum T_i^2=T_{n+1}^2\sum \cos\phi_i^2=T_{n+1}^2, \quad(\cos\phi_i=(e_i,v), ~(v,v)=1).

Előzmény: [2620] Lóczi Lajos, 2008-03-23 20:58:53

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]