Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2670] Gyöngyő2008-05-30 22:41:42

Probáltam feltölteni,de csak az egyik oldalt engedi feltölteni! Túl nagy gondolom.

[2669] Lóczi Lajos2008-05-30 21:05:10

Nem akarod a PDF-et feltölteni ide a fórumra a hozzászólásodhoz?

Előzmény: [2668] Gyöngyő, 2008-05-30 19:56:22
[2668] Gyöngyő2008-05-30 19:56:22

Sziasztok!

Megvan a sorösszeg de nem tudom begépelni,de megcsináltam pdf-be.Kinek tudnám elküldeni?

Üdv.:

Zsolt

[2667] Lóczi Lajos2008-05-30 00:48:34

Számítsuk ki a \sum_{k=1}^\infty \frac{\cos(k)}{k} összeget.

[2666] Lóczi Lajos2008-05-29 23:21:47

Számítsuk ki az \int_0^\infty \frac{\cos(x^2)}{\ln(x)} dx integrált.

[2665] médzsör2008-05-29 19:49:20

egy utolsó feladat ,hátha valaki kedvet kap..:): matek2 vizsgán volt példa(lineális algebra) számitsuk ki az integrál értékét azon a 3szögön, melynek csúcspontjai: p(1,-1) p(2,4) és p(2,-4) ez is 2ös integrál az integrál (3x-4y-1)dxdy ha ezt valaki megtudná csinálni jó lenne ,ugyanis hétfön ilyesmi példa is lessz...

[2664] Sirpi2008-05-29 18:33:26

Megoldani nem fogom, csak hátha így más kedvet kap:

\int_0^2 \int_0^{2-y} (2x-y)^2 dx dy

Bár ez mindkét változóban polinom, szóvan nem kellene, hogy az integrálás gondot okozzon.

Előzmény: [2663] médzsör, 2008-05-29 16:23:09
[2663] médzsör2008-05-29 16:23:09

sziasztok nekem a következö lenne a kérdésem 2ös integrállal kapcsolatba: csak leirni tudom

integrál 0-2ig integrál 0tol 2-y-ig (2x-y) a négyzeten dxdy valaki ezt megtudná oldani?

[2662] leni5362008-05-28 18:27:01

Ha az oldalközéppontokban helyezkednek el a farkasok, akkor a határ a sebességek arányára mindig 1, ha a csúcsokban vannak, akkor kissé húzósabb.

Szabályos háromszögnél \sqrt3 alatt van a nyúlnak stratégiája, viszont a farkasok stratégiáját még nem látom \sqrt3 fölött.

Előzmény: [2661] Enkidu, 2008-05-27 12:41:39
[2661] Enkidu2008-05-27 12:41:39

Sziasztok!

Ha van még kedve valakinek a feladattal foglalkozni, mi a helyzet, ha a farkasok egy szabályos n-szög csúcsaiban helyezkednek el (mondjuk n=3, esetleg 6 esetén)? Illetve mi a helyzet, ha egy kör mentén, a szomszéd farkasoktól azonos távolságra? Ez utóbbi nem tűnik túl könnyűnek, bár lehet, hogy a szabályos n-szögből kijön.

Ja és én sem foglalkoztam még vele, csak most úgy eszembe jutott ez a két kérdés.

Sziasztok!

Előzmény: [2660] leni536, 2008-05-26 22:41:11
[2660] leni5362008-05-26 22:41:11

Az első esetre, tehát amikor a farkasok kezdetben a sarkokban állnak:

Ha a farkasok és a nyuszi sebességének aránya nagyobb vagy egydenlő \sqrt2-vel, akkor állítsuk sarkára a négyzetet, ebben az esetben nyilvánvalóan látszik, hogy a szemközti farkasok be tudják lőni minden pillanatban a nyuszi koordinátáit.

Ha a farkasok és a nyuszi sebességének aránya kisebb \sqrt2-nél, akkor ezt az arányt nevezzük el \lambda-nak.

A nyuszi elindul egyenesen az egyik sarok felé és meg tesz \lambda\cdot\frac{a}2-nél valamivel hosszabb utat, ahol a a négyzet oldalának hossza. Ekkor megfigyeli, hogy a sarokban lévő farkas elmozdult-e. Ha jobbra mozdul el, akkor a nyuszi merőleges fordulatot vesz balra és kiszalad a kerítésen, ha balra, akkor pont fordítva, ha a helyén marad, akkor mindegy merre.

Az oldalfelezőpontos esetben is hasonlóak a stratégiák.

[2659] Sirpi2008-05-26 20:26:31

Pedig így van. Ha a sarkokban vannak, akkor kicsit kevesebb, mint \sqrt 2-ször gyorsabb farkasokkal is el tud bánni a nyuszi (középről), míg az oldalfelezőpontokból induló farkasok esetén 1-\varepsilon esetén van nyerő stratégiája. Utóbbi esetben könnyű látni, hogy a nyuszival azonos sebességű farkasok esetén nem tud kijutni: a farkasok mindig a nyuszi oldalakra vett merőleges vetületébe mozdulnak (már kezdetben is ott vannak). A feladat többi részét egyelőre nem lőném le.

Előzmény: [2658] jonas, 2008-05-26 14:32:49
[2658] jonas2008-05-26 14:32:49

Hogy lehetne a határ különböző csak attól, hogy a farkasok kezdetben máshol helyezkednek el?

Előzmény: [2657] leni536, 2008-05-26 12:14:58
[2657] leni5362008-05-26 12:14:58

Ebben az utóbbiban a határ 1 lesz. 1 alatt van stratégiám a nyúl számára. Ha pont 1, akkor a farkasok nyernek.

Az eredeti feladatban nálam is \sqrt2, de én sem lőném le a poént, leginkább mert lusta vagyok begépelni, meg mert alapvetően fizikus vagyok és úgysem tudom úgy leírni, hogy egy matekos ne tudjon belekötni. :P

Előzmény: [2656] Enkidu, 2008-05-26 11:58:20
[2656] Enkidu2008-05-26 11:58:20

Hello!

Megvan a megoldás, feltéve, ha az állatok pontszerűnek tekinthetők (a határ - a sebességek arányára, ha jól sejtem  \sqrt2 ); nem lőném le még a "poént", bár a zárójeles rész beszédes lehet.

Nekem az jutott eszembe a feladat kapcsán, hogy mi a helyzet, ha a farkasok a négyzet oldalfelező pontjaiban vannak, a nyuszi pedig a négyzet közepén? Első blikkre ez utóbbit nem tudom megválaszolni.

Ui.: Volt Szegeden az egyetemen egy tanárom dr. Pintér Lajos, aki mindig bátorított minket arra, hogy a legegyszerűbb példákat is általánosítsuk, egy kicsit változtassuk meg, kóstolgassuk... ergo kísérletezgessünk vele. Ő (pedig marha nagy koponya) soha nem bánta, ha egy-egy példa "gagyi", egyfelől mindig van, akinek nem az, másfelől tovább gondolva szép példák, általánosítások kerekedhetnek ki belőle. Bocs, ha szószátyár voltam, sziasztok!

Előzmény: [2654] Cckek, 2008-05-25 08:51:21
[2655] jonas2008-05-25 12:57:54

Jaj, ne! Még egy Tom és Jerry-s feladat, csak most négy Tommal.

Előzmény: [2654] Cckek, 2008-05-25 08:51:21
[2654] Cckek2008-05-25 08:51:21

Egy érdekes feladat, ami szépen általánosítható és több kérdést is von maga után:

Egy négyzet alakú kert közepén ül egy nyuszi, a kert négy sarkában egy-egy farkas. A farkasok 1,4-szer gyorsabban futnak a nyúlnál, de csak a kert határa mentén mozoghatnak. Kijuthat-e a nyúl a kertből? Mennyi a nyúl és farkas sebességének a minimális aránya, mikor kijuthat?

Előre is elnézést ha a feladat túl egyszerű vagy gagyi:D

[2653] Lajosz2008-05-19 16:15:27

Köszönöm Sirpi!

A lenti számháromszög két utolsó sora a 12 és 13 esetét írja le, azok már nem fértek el egy sorba...

Értelemszerűen az előző sorok számainak összegei (felfelé haladva) 3 - nak 11, 10, 9,...1, 0 hatványai.

Ez emlékeztet a permutációk fixpontjaira! Az ismétléses variáció fixpontjaira van valahol irodalom?

A bal oldali oszlop:1 2 4 8 16...mint a permutációknál: a nulla fixpontok darabszámát jelentené. majd jobbra haladva az egy, kettő, stb fixpontok darabszámát!

Egyáltalán van ilyen fogalom? Ha van milyen néven keressem?

Mert ez, ha általánosítjuk, "m" alapú hatvánnyal leírható minden ismétléses variációra igaz!

m=3

1

2, 1

4, 4, 1

8, 12, 6, 1

16, 32, 24, 8, 1

32, 80, 80, 40, 10, 1

64, 192, 240, 160, 60, 12, 1

128, 448, 672, 560, 280, 84, 14, 1

512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1

1024, 5120, 11520, 15360, 13440, 8064, 3360, 960, 180, 20, 1

2048, 11264, 28160, 42240, 42240, 29568, 14784, 5280, 1320, 220, 22,1

4096, 24576, 67584, 112640, 126720, 101376, 59136, 25344, 7920, 1760, 264, 24, 1

8192, 53248, 159744, 292864, 366080, 329472, 219648, 109824, 41184, 11440, 2288, 312, 26, 1

lásuk m=4 esetén!

1

3, 1

9, 6, 1

27, 27, 9, 1

81, 108, 54, 12, 1

243, 405, 270, 90, 15, 1

729, 1458, 1215, 540, 135, 18, 1

2187, 5103, 5103, 2835, 945, 189, 21, 1

Maple kóddal:

** :a hatvány jele.

for i from 0 to 13 do seq(binomial(i, j)*3**(i-j), j = 0 .. i) od;#

3**(i-j) > itt a 3 egyenlő m=4 minusz egy, etc...

Előzmény: [2652] Sirpi, 2008-05-19 10:47:20
[2652] Sirpi2008-05-19 10:47:20

A rendes 13-as totón a pontosan k találat darabszáma:

\binom {13}k \cdot 2^{13-k}

Hiszen kiválasztjuk azt a k meccset, amit eltalálunk, azok kitöltése egyértelmű, a többinél pedig mindenhol 2 lehetőségünk van, hogy oda rosszat írjunk. Ha fix meccsek is vannak, akkor a képletben mindkét 13-ast cseréld ki tetszőleges kisebb számra (mondjuk az nem teljesen világos, hogy a fix találatokat miért nem számolod a találatok közé, mert azt írod, hogy 12-ből maximum 12 találatod lehet, de mivel így szeretnéd értelmezni, ennek megfelelően adtam meg a képletet).

Előzmény: [2651] Lajosz, 2008-05-19 10:40:06
[2651] Lajosz2008-05-19 10:40:06

Ismétléses variáció:

A totón, ha minden esetet megjátszunk, (3 a 13-on ), mennyi 0, 1, 2,...11, 12, 13. találatunk lesz, hogyan kell kiszámítani?

Ugyanezt hogyan számítjuk, ha 1 fix mérkőzés mellett (3 a 12-en) eredményt megjátszunk, mennyi 0, 1, 2,...11, 12. találatunk lesz?

etc...

[2650] Róbert Gida2008-05-16 12:57:13

Ez lényegében meg Lajos eredeti konstrukciója, csak tekergetések nélül megoldva, de az is 2/3-os megvalósítás.

Előzmény: [2649] Sirpi, 2008-05-16 01:37:44
[2648] Sirpi2008-05-16 02:27:20

És hogy ez miért optimális:

A közlekedőutat tekintsük egy gráfnak (a csúcsok az üres mezők, az élek az élszomszédos mezőket kötik össze). Erről a gráfról kell belátni, hogy ha nem is mindig összefüggő, de néhány autó átpakolásával mindig azzá tehető. Hiszen ha van út, ami nincs összeköttetésben a bal felső sarokkal (az ábrán a sárga tartomány), akkor az annyit jelent, hogy egy vagy több autó blokkolja az utat a bal felső sarokig. Vegyünk egy ilyen autót (piros), és toljunk rajta egyet, rá a belső útra (kék helyzet). Az autó az új helyzetében nem blokkolhat másik autót, hiszen az autók hiába hajtanak a belső útra, onnan nem tudnak kijutni, csak ha az eredeti helyükre visszamennek, tehát a kék mező érintése nélkül is ki tudnak jutni, ha eddig ki tudtak. A kék autó pedig szintén kijut (egyet előremegy, és onnan már a feltételezésünk szerint kijut). Ezzel a tolással a belső út hossza 1-gyel csökkent, így ilyen lépések véges sorozatával felszámolható az összes belső út (jelen esetben a kék autót még 1-gyel lejjebb tolva a belső út összekapcsolódik a "fő" úthálózattal, vagyis több lépésre nincs is szükség).

Így a továbbiakban feltehető, hogy a közlekedőutak hálózata összefüggő, álljon k mezőből. Ekkor legalább k-1 belső kapcsolódása van (az összefüggő gráfnak legalább k-1 éle van). Minden belső kapcsolódás 2-vel csökkenti a közlekedőhálózat kerületét, tehát az összkerület legfeljebb 4k-2(k-1)=2k+2. Minden él a kerületen egy autónak ad lehetőséget, hogy felhajtson az úthálózatra, és így eljusson a bal felső sarokba (egy autó több élen át is megteheti ezt). Sőt, a bal felső mező két sarokéle nem segít egy autónak sem, vagyis legfeljebb 2k autó lehetséges k mezőből álló úthálózat esetén. Tehát a mezők számának legfeljebb 2/3-án lehetnek autók, és ez az arány aszimptotikusan (az előző hsz. ábrája alapján) el is érhető.

Megj.: Sőt, az út "meglátogatja" a másik 3 sarkot is, hiszen egy sarok és két szomszédja közül nem állhat mind a 3-on autó, vagyis k mezőből álló úthálózat esetén legfeljebb 2k-3 autó lehetséges (hiszen minden határélnél vesztünk egy autót) - feltéve, hogy a parkoló mindkét oldalának hossza legalább 4, mert ilyenkor a sarkokkal szomszédos mezők nem eshetnek egybe.

Előzmény: [2649] Sirpi, 2008-05-16 01:37:44
[2649] Sirpi2008-05-16 01:37:44

Ez a konstrukció pedig 2/3-os (66,67%) határértéket ad, ráadásul elég egyszerű is, nem kell mozaikba pakolni (bár épp azt is lehet).

Előzmény: [2647] Sirpi, 2008-05-16 01:18:30
[2647] Sirpi2008-05-16 01:18:30

Nem kell azt az egy autót se kitörölni, kis átszervezéssel elérhető a 28/49\approx57,143%. Viszont 6×6-asra tudtam egy kicsit jobbat is csinálni, csak a bal felső (pirosra festett) autót kell kiszedni. De egyetlen autó kivétele nem befolyásolja a határértéket, ami jelen esetben 21/36\approx58,333%.

Ja, és a határszám megtalálásához nem kell feltétlenül négyzet alakú területeket használni, ha esetleg egy téglalap jobb eredményt ad.

Előzmény: [2646] Róbert Gida, 2008-05-15 23:35:28
[2646] Róbert Gida2008-05-15 23:35:28

Szerintem nem adható rá explicit képlet tetszőleges n-re. Programozási versenyen volt egy hasonló példa axb-es téglalapra, de úgy, hogy alul és felül is ki lehet jutni, gyakorlatilag végignézték az összes esetet a megoldásoknál.

Ha az első ábrában a hatodik sor első pozicióján nem autó van, és ilyen 7x7-es blokkokat rakunk egymásra, akkor tetszőleges autó fel tud jutni a legfelső sorba. Ha a nagy négyzet felső sorából töröljük az autókat, így már mindenki kijut, ez (7k)x(7k)-asra müködik, ha n nem ilyen alakú, akkor legyen k=floor(n/7). Az autók száma aszimptotikusan \frac{28-1}{49}n^2=\frac{27}{49}n^2.

Felső becslés pedig: egy autónak van van legalább egy nem autó szomszédja, hogy esélye legyen kijutni (kivéve, ha n=1 és 1 autó van az ábrán), továbbá egy nem autó hely maximum 3 autónak lehet szomszédja, ami kijutásra használja, ellenben minden szomszéd autó, de akkor nem tudna kijutni, ha odamenne. Így #autó<=3*#nemautó, azaz

#auto<=3*(n2-#auto), innen \frac{#auto}{n^2}\leq \frac 34 teljesül, ha n>1.

Előzmény: [2643] Lóczi Lajos, 2008-05-15 21:51:46

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]