Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]  

Szeretnél hozzászólni? Jelentkezz be.
[2947] HoA2009-05-18 18:26:57

És könnyen láthatóvá hogy lehet átszínezni?

Előzmény: [2944] jonas, 2009-05-18 13:22:32
[2946] jonas2009-05-18 18:12:31

5×5-ösre a lenti kód változatlanul nem fut le, mert túl sok memóriát eszik, és ha azt kijavítjuk, akkor meg túl sok ideig fut. Lehetne gyorsabb programot írni, de egyszerűbb csak a memóriával takarékoskodni és azt észrevenni, hogy feltehetjük, hogy az első sor első három mezője üres (hiszen van egy olyan sor, amiben csak két mező teli, és a sorokat meg oszlopokat átrendezhetjük), akkor pedig már csak 222 lehetőséget kell megnézni, ennyi pedig néhány percen belül lefut, ha a kódot csak kicsit írjuk is át. (Valószínűleg még a teljes 225-es keresést is le lehet futtatni, de úgy tűnik, tovább tart, mint ami alatt ezt megírom és a screenshot-ot fölrakom.)

Előzmény: [2945] Sirpi, 2009-05-18 13:26:34
[2945] Sirpi2009-05-18 13:26:34

Tetszik a kód tömörsége (meg se próbáltam értelmezni :-) ), de nekem ez még ment kód nélkül is. Megnézed 5x5-re is esetleg?

Előzmény: [2944] jonas, 2009-05-18 13:22:32
[2944] jonas2009-05-18 13:22:32

Remek! Ezt számítógéppel nyers erővel pár perc alatt meg lehet oldani. Csatolom a számításról készüt screenshotot, ami az eredményt is megmutatja, de hogy még más is gondolkozhasson rajta, átszínezem nehezen láthatóvá.

Előzmény: [2943] Sirpi, 2009-05-18 12:05:59
[2943] Sirpi2009-05-18 12:05:59

Na, egy nem túl nehéz, nemrég találtam ki:

503. feladat: Legfeljebb hány mező jelölhető meg úgy egy 4x4-es sakktáblán, hogy minden megjelölt mezőnek vagy a sorában, vagy az oszlopában legfeljebb egy másik megjelölt mező lehet?

[2942] Lóczi Lajos2009-05-08 20:32:31

Jaa, megértettem :)

Előzmény: [2941] nadorp, 2009-05-08 19:47:22
[2941] nadorp2009-05-08 19:47:22

Az Arany Dániel és a megoldás metszete(!) nem üres :-)

Előzmény: [2940] R.R King, 2009-05-08 16:00:42
[2940] R.R King2009-05-08 16:00:42

Bizonyára sok okos 10. osztályos használná is a sin(x) Taylor sorfejtését:)

Előzmény: [2939] nadorp, 2009-05-08 11:57:32
[2939] nadorp2009-05-08 11:57:32

Ez feladható lenne Arany Dánielen :-)

Előzmény: [2938] Lóczi Lajos, 2009-05-07 19:28:23
[2938] Lóczi Lajos2009-05-07 19:28:23

Bizonyítsuk be, hogy az

1+\sqrt{\frac{8}{3}}\sin\left(\frac{1}{3}{\rm{arcsin\sqrt{\frac{27}{32}}}}\right)

szám egy nevezetes állandó. Írjuk fel egyszerűbb alakban.

[2937] jenei.attila2009-05-04 20:59:56

Először is szeretettel üdvözlünk. Mint láthatod, ebben a topikban érdekes (vagy érdekesnek ítélt) feladatokat adunk fel egymásnak, megbeszéljük a különböző megoldásokat, új feladatokat találunk ki, segítséget kérünk egymástól. A témák teljesen szerteágazóak: számelméleti, logikai, analízisbeli, algebrai, geometriai, stb. feladatok kerülnek elő. A feladatok megértéséhez általában nincs szükség középiskolás ismeretanyagon túlmenő matematikai ismeretekre. De javaslom hogy legalább néhány lap erejéig olvasd vissza a fórumot, sokkal részletesebb (és érdekesebb) áttekintést kapsz úgy arról, hogy voltaképpen mivel is foglalkozunk itt. Itt van pl. rögtön az 500. feladat, ami nem túl nehéz, de igen szép. Reméljük kedvet kapsz a fórumban való további aktív részvételre. Hát egyelőre ennyit.

Előzmény: [2936] Orsós Ferenc, 2009-05-04 12:02:54
[2936] Orsós Ferenc2009-05-04 12:02:54

hellosztok Amint látjátok új gyerek vagyok, ezért arra szeretnélek megkérni titeket, ha lehet akkor avassatok be, hogy éppen miovel is foglalkoztok. előre is köszi.:)

[2935] Csimby2009-04-30 20:45:51

lassú vagy :P

Előzmény: [2934] Tibixe, 2009-04-30 20:38:38
[2934] Tibixe2009-04-30 20:38:38

Egyetemi ZH feladatsor: LINK

4. feladatot nézzétek :)

[2933] jenei.attila2009-04-22 20:22:38

Valóban, nem írtam le, csak "gondoltam". Számomra annyira nyilvánvalónak látszott, hogy fölöslegesnek tartottam leírni. De így pontos. Ez egyébként egy szép feladat volt. A te megoldásodból az is kijön, hogy minden pénztárosnak ugyanannyi kulcsot kell birtokolni, én pedig egyszerűen kihasználtam a feladat feltételét. Kíváncsi lennék, honnan származik ez a feladat.

Előzmény: [2932] HoA, 2009-04-22 19:52:07
[2932] HoA2009-04-22 19:52:07

Köszönöm. Cserébe engedj meg egy kis korrekciót érvelésedhez. Első érvednél a "minden zárhoz legalább 2 kulcs" egy elégséges, nem pedig szükséges feltétel. Valóban igaz, hogy ha minden zárhoz legalább 2 kulcsot osztunk ki, akkor bármely 3 pénztárost kiválasztva, legalább az egyiknél lesz az adott zárhoz kulcs. De ebből még nem következik állításod, nevezetesen az, hogy ha bármely 3 pénztáros ki tudja nyitni a széfet, akkor minden zárhoz legalább 2 kulcsot kell kiosztani. ( A legalább két kulcs/zár szükségessége szerintem legegyszerűbben úgy látható be, hogy ha lenne olyan zár, amelyiknek csak egy kulcsa van, akkor az a pénztáros trió, amelyiknek e kulcs birtokosa nem tagja, nem tudná kinyitni a széfet.)

Előzmény: [2928] jenei.attila, 2009-04-22 13:13:29
[2931] jenei.attila2009-04-22 14:57:39

Bocs, \sqrt{13} és \sqrt{7} lánctört kifejtésére gondoltam.

Előzmény: [2930] jenei.attila, 2009-04-22 14:56:14
[2930] jenei.attila2009-04-22 14:56:14

Persze, hogy kijön. De erre a rekurzióra is valahogy rá kell jönni. A közelítésből is hasonló rekurzió adódik, nem biztos, hogy pont ez (nem számoltam ki), de az kiadja az összes megoldást. Egyébként a 13, illetve 17 lánctört kifejtéséből is kijön.

Előzmény: [2929] m2mm, 2009-04-22 14:48:23
[2929] m2mm2009-04-22 14:48:23

Üdv!

Kijön közelítések nélkül is. a,-ra a c0=0, c1=3, cn=16cn-1-cn-2 sorozat elemei megfelelőek, b,-re pedig a c0=0, c1=180, cn=1298cn-1-cn-2 sorozat elemei megfelelőek, bizonyítható teljes indukcióval.

Előzmény: [2927] jenei.attila, 2009-04-21 20:56:06
[2928] jenei.attila2009-04-22 13:13:29

Szép megoldás, grat. Én egy kicsit másképp számoltam, persze az eredmény ugyanez. Ahhoz, hogy bármely 3 pénztáros ki tutja nyitni a széfet, minden zárhoz legalább 2 kulcsot kell kiosztani, ugyanis ekkor bármely 3 pénztárost kiválasztva, legalább az egyiknél lesz az adott zárhoz kulcs. A feladat feltétele szerint azonban semmelyik 2 pénztáros sem tudja a széfet kinyitni, ezért egyik zárhoz sem lehet 2-nél több kulcsot kiosztani. Ugyanis ha valamelyik zárhoz 3 pénztárosnál lenne kulcs, akkor ezt a zárat bármely 2 pénztáros tudná nyitni, a maradék 5 zárat pedig legfeljebb 5 pár pénztáros nem tudná nyitni, de 6 lehetséges pénztáros pár van. Mivel így 12 kulcsot osztunk ki, egy pénztároshoz 3 kulcs kerül. Innentől kezdve ugyanúgy gondolkodtam ahogy te, vagyis "A feltételek értelmében minden egy és kételemű csoportnak van TZ-je, de a három vagy négyelemű csoportoknak nincs. Két kételemű csoportnak – párnak - nem lehet közös TZ-je, hiszen akkor a két pár egyesítéséből adódó legalább 3 elemű csoport nem tudná ezt a zárat kinyitni."

Előzmény: [2924] HoA, 2009-04-21 12:10:19
[2927] jenei.attila2009-04-21 20:56:06

Egyébként összefüggésben van az előző néhány hozzászólásban tárgyalt ún. Dirichlet féle approximációs tétellel, ami az irracionális számok másodrendű racionális közelíthetőségéről szól.

Előzmény: [2925] MTM, 2009-04-21 17:25:26
[2926] jenei.attila2009-04-21 20:39:45

Ezeket úgy hívják, hogy Pell egyenlet. Sok helyen utána lehet nézni.

Előzmény: [2925] MTM, 2009-04-21 17:25:26
[2925] MTM2009-04-21 17:25:26

501. feladat:

Adjunk meg végtelen sok pozitív egész c számot, amire

a, 7c2+1

b, 13c2+1

négyzetszám.

[2924] HoA2009-04-21 12:10:19

500. feladat Nevezzük egy pénztáros csoporthoz tartozó tiltott zárnak (TZ) az olyan zárat, amelyet a csoport tagjai együtt sem tudnak kinyitni. A feltételek értelmében minden egy és kételemű csoportnak van TZ-je, de a három vagy négyelemű csoportoknak nincs. Két kételemű csoportnak – párnak - nem lehet közös TZ-je, hiszen akkor a két pár egyesítéséből adódó legalább 3 elemű csoport nem tudná ezt a zárat kinyitni. Mivel \binom 4 2 = 6 pár van, legalább 6 TZ kell legyen, és mivel éppen 6 zár van, minden párnak pontosan egy TZ-je van. Minden pénztáros 3 pár tagja, így nem lehet nála e három pár TZ –jének kulcsa, vagyis legfeljebb 6-3 = 3 kulcsa lehet. Másrészt 3 olyan pár van, amelyiknek egy kiválasztott pénztáros nem tagja. E 3 pár TZ-jének kulcsa nála kell legyen, különben az egyik ilyen párral hármas csoportot alkotva a pár TZ-jét nem tudnák kinyitni. Ezért legalább 3 kulcsa van. Tehát a feladat kikötése „melynél mindegyik pénztáros ugyanannyi kulccsal rendelkezik” elhagyható, csak ilyen elosztás lehetséges: mindenkinek 3 kulcsa van. A TZ-k párokhoz rendelése a kulcselosztást egyértelműen meghatározza: a fentiek szerint minden pénztáros azzal a 3 kulccsal rendelkezik, amelyik az őt nem tartalmazó párok TZ-jét nyitja. Így a kulcselosztások száma annyi, ahányféleképpen a 6 TZ hozzárendelhető a hat párhoz: 6! = 720.

Előzmény: [2916] lorantfy, 2009-04-19 15:08:06
[2923] sakkmath2009-04-21 11:19:02

EV-tételnek hívják és itt található.

Előzmény: [2909] Cogito, 2009-04-14 16:28:10

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]