Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[311] Hajba Károly2004-04-15 13:05:26

Kedves László!

Fürge vagy és gondolatolvasó. Ti. ezek lettek volna a következő kérdéseim. Továbbá az, hogy létezik-e aszimmetrikus megoldás valamely esetben?

HK

Előzmény: [310] lorantfy, 2004-04-15 12:54:58
[310] lorantfy2004-04-15 12:54:58

70. feladat megoldása: Egyenlőre csak beraktam a korongokat a négyzetrácsba. Most még ki kéne találni hány megoldás van! Aztán általánosítani nxn-es rácsra és k<n2 korongra. Mikor oldható meg egyáltalán?

Előzmény: [309] Hajba Károly, 2004-04-15 07:47:30
[309] Hajba Károly2004-04-15 07:47:30

70. feladat

Adott egy fehér 4*4-es négyzetrács és 10 db fekete korong. Helyezzük el a korongokat egy-egy négyzetre az alábbi feltételek szerint:

a) minden sorban és oszlopban páros korong legyen.

b) minden sorban és oszlopban páratlan korong legyen.

HK

[308] Hajba Károly2004-04-14 01:37:05

Kedves Sirpi és Csimby!

Köszi a pontosítást, s mivel tetszett a feladat, elmélázatam az általánosításán is. Íme az általános megoldóképlet a maximumértékre, ahol N pozitív egész:

f(N)=3^{\Big[\frac{N-2}{3}\Big]}*\Big(2+3*\Big\{\frac{N-2}{3}\Big\}\Big)

HK

Előzmény: [307] Sirpi, 2004-04-12 15:16:43
[307] Sirpi2004-04-12 15:16:43

Valóban a 3668 a maximum, nézzük is, miért.

Tegyük fel, hogy felosztottuk a 2004-et néhány pozitív egész szorzatára.

Ha van a számok közt 1-es, akkor egy másik k számmal összevonva 1.k<1+k miatt növeljük a szorzatot.

Ha van olyan k szám köztük, ami legalább 4, akkor nem rontunk, ha k-t kicseréljük 2.(k-2)-re, sőt, k\neq4 esetén jav³tunk is.

Így feltehető, hogy csupa 2-es és 3-as tényezőkből áll a szorzat. De mivel 2.2.2<3.3 és 2+2+2=3+3, így legfeljebb 2 db. 2-es lehet az optimális szorzatban. De a 2004 osztható 6-tal, ami miatt a 2-esek száma 3-mal osztható kell legyen. De 0 és 2 közt csak a 0 osztható 3-mal, így az optimális szorzatban 0 db 2-es és 668 db. 3-as kell legyen.

Nem láttam be, de triviális, hogy valóban van maximum...

S

Előzmény: [306] Hajba Károly, 2004-04-12 01:45:34
[306] Hajba Károly2004-04-12 01:45:34

Megoldás a 69.feladatra:

Kezdjük el a 2004-et az n\inN>2 számokkal elosztani és utána képezni az S=\bigg(\frac{2004}{n}\bigg)^n-t. Az Smax-ot az n\approx\frac{2004}{e} helyen kapjuk, így S_{max} \approx e^\frac{2004}{e}.

Ültessük most ezt át az egész számokra, azaz a 2004-t osszuk fel 2-es és/vagy 3-as számok összegére. (Várhatóan 738 darabra), majd ezeket összeszorozni. Erre közelítést az alábbi egyenletrendszer megoldásával tehetünk:

2*n+3*m=2004

n+m=738

Innen az S=2210*3528 szám adódik, de érdekes módon nem ez adja a jó megoldást, hanem az S=3668.

HK

Ui: Remélem, jó az elképzelésem, s egyébként kellemes locsolkodást mindenkinek :o)

Előzmény: [305] Csimby, 2004-04-11 21:48:22
[305] Csimby2004-04-11 21:48:22

69.feladat Számítsuk ki olyan pozitív egész számok szorzatának maximumát, amelyek összege 2004.

[304] Sirpi2004-04-09 10:05:59

Ezt a feladatot nem ismertem, viszont némi agyalás után rájöttem, hogy a feladat nem más, mint egy többdimenziós Mérgezett csoki játék. Ez alapján az a válasz, hogy ha n\neq1, akkor az első játékosnak van nyerő stratégiája (viszont ezt a stratégiát nem lehet megadni, általánosan csupán egzisztenciabizonyítás adható).

Ezután a bevezető után nem is lőnem le (teljesen :-) ) a megoldást, de leírom, hogy mi is az a 2 dimenziós Mérgezett csoki játék:

Van egy n×m méretű csokink, melynek a bal felső kockája mérgezett, valamint egy L alakú késünk, mellyel a csoki rácsai mentén vághatunk. A kést csak úgy forgathatjuk, hogy a levágandó rész jobb alulra essen. A 2 játékos felváltva vág a csokiból, és amit levágnak, azt meg is eszik. Az veszít, akinek a mérgezett kiskocka marad.

Innen már csak azt kell kitalálni, hogy a 2 feladatnak mi köze van egymáshoz, és miért nyer (majdnem) mindig az A játékos...

Remélem, sikerült mindenkit kellően összezavarnom :-)

Könnyű pótfeladat:

a) adjuk meg a nyerő stratégiát, ha a csoki 2×n-es

b) ha n×n-es

Sirpi

Előzmény: [303] Csimby, 2004-04-04 23:25:47
[303] Csimby2004-04-04 23:25:47

Talán van aki nemismeri:

68. feladat A és B a következő játékot játszák: Kiindulnak egy adott N számból és felváltva mondják N-nek egy-egy osztóját, úgy hogy senki sem mondhat olyan osztót ami az eddig elhangzott osztók egyikének osztója. Az a játékos veszít aki már csak N-et tudja mondani. Mikor, kinek van nyerő stratégiája?

[302] Gubbubu2004-03-27 09:33:59

300=12+2.122, azaz 300=\sum_{i=1}^{2}i\cdot{}12^i, vagyis az S_n=\sum_{i=1}^ni\cdot{}12^i sorozat második tagja.

Előzmény: [301] Gubbubu, 2004-03-27 09:23:41
[301] Gubbubu2004-03-27 09:23:41

300 az első 9 darab prímszám összegének háromszorosa. (ez már nem olyan szép tulajdonság, de talán kihozható belőle valami)

Előzmény: [300] Gubbubu, 2004-03-27 09:17:26
[300] Gubbubu2004-03-27 09:17:26

300 a huszonnegyedik háromszögszám.

Előzmény: [299] Csimby, 2004-03-26 22:12:12
[299] Csimby2004-03-26 22:12:12

Én is ezt a megoldást ismerem, amit Nadorp és Onogur összehozott, de a másik is érdekes. Szerintem is nagyon szép.

Kicsit feleslegesnek tartottam ennyi miatt hozzászólást írni ezért arra gondoltam megnézem a What's Special About This Number? lapot, mit ír a 300-ról (mivel ez a 300. hozzászólás, ha valaki meg nem előz) és ezt találtam: "300 is the largest possible score in bowling", fantasztikus. Egyébként vannak "tényleg" érdekes(ebb) dolgok is ezen a honlapon.

[298] nadorp2004-03-26 09:18:25

Szép!

Előzmény: [297] Sirpi, 2004-03-26 08:57:09
[297] Sirpi2004-03-26 08:57:09

Na, akkor egy próba:

Tudjuk, hogy 0<a<b<c, és használjuk Onogur szemfüles átalakítását:

f(x)=(a-x)(b-x)c+a(b-x)(c-x)+(a-x)b(c-x)

Ekkor

f(a)=a(b-a)(c-a)>0

f(b)=(a-b)b(c-b)<0

f(c)=(a-c)(b-c)c>0

Az előjelváltások és f folytonossága miatt muszáj lenni gyöknek mind az (a,b), mind a (b,c) intervallumban.

S

Előzmény: [294] Hajba Károly, 2004-03-26 00:57:49
[296] nadorp2004-03-26 08:54:52

Sziasztok !

Adok egy megoldást a 67. feladatra. A bizonyítás nem elemi, de a feladat alapötlete szerintem innen származik.

Tekintsük a p(x)=abcx3-(ab+ac+bc)x2+(a+b+c)x-1 polinomot. Könnyen látható,hogy p(x)=-x^3(\frac1x-a)(\frac1x-b)(\frac1x-c) miatt a p(x) gyökei az \frac1c<\frac1b<\frac1a számok. A polinomnak három valós gyöke van, ezért létezik egy lokális maximuma és egy lokális minimuma. Ezeket a szélsőértékeket a polinom az (\frac1c,\frac1b) illetve a (\frac1b,\frac1a) intervallumokon veszi fel. A szélsőértékek helyeit a p'(x)=0 egyenlet gyökei adják.Viszont a

p'(x)=3abcx2-2(ab+ac+bc)x+(a+b+c)=0 egyenlet gyökei nyilván a

(a+b+c)x2-2(ab+ac+bc)x+3abc=0 egyenlet gyökeinek a reciprokai, ezért ennek az egyenletnek a gyökei az (a,b) illetve (b,c) intervallumokba esnek.

[295] Hajba Károly2004-03-26 01:00:16

Elütöttem a feladat sorszámát! Természetesn a 67. feladatra adtam részmegoldást. :o)

Előzmény: [294] Hajba Károly, 2004-03-26 00:57:49
[294] Hajba Károly2004-03-26 00:57:49

Kedves Csimby!

A 65. feladatnál az alábbi részeredményre jutottam:

A (a+b+c)x2-2(ab+bc+ac)x+3abc=0 egyenletet átrendezve az következő egyenletet kapjuk:

(a-x)(b-x)c+a(b-x)(c-x)+(a-x)b(c-x)=0

a) Ha x<a akkor az összeg mindhárom tagja pozitív lesz, míg ha x>c akkor mindhárom negatív lesz, s ez ellentmondás. Tehát a<x<c.

b) Ha rendre x= a, b, c, akkor az összeg két-két tagja rendre zérus, míg a harmadik nem. Így ez is ellentmondás. Tehát x\ne(a,b,c)

c) Ha a<x<b vagy b<x<c, akkor az összeg 3. tagja mindig negatív, a másik két tag előjele ellentétes, így mindkét tartományban lehetséges gyök; de eddig még nem leltem meg a megoldást, mellyel bizonyíthatnám, hogy két külön tartományba is kell kerülniük. :o(

HK

Előzmény: [289] Csimby, 2004-03-24 00:40:29
[293] Sirpi2004-03-25 15:10:41

Megjegyzés a 65. feladathoz:

A kitűzésnél 0<x<\pi/4 volt, de az állítás igaz (és a bizonyítás is megy) 0<x<\pi/2-re. Sőt több is igaz:

Beláttuk, hogy ha x hegyesszög, akkor x legfeljebb a sin x és tg x számtani közepe lehet. Ez viszont igaz számtani helyett harmonikus középre is, amivel élesebb becslést kapunk:

\frac{2}{\frac{1}{\sin x}+\frac{1}{\tg x}}=\frac{2 \sin x}{1+\cos x}=\frac{4 \sin \frac x2 \cos \frac x2}{2cos^2 \frac x2}=2\tg \frac x2 \geq 2 \cdot \frac x2 = x

S

Előzmény: [292] nadorp, 2004-03-25 13:34:34
[292] nadorp2004-03-25 13:34:34

Megoldás a 65. feladatra.

\frac{\sin{x}+\tg{x}}2=\frac{\sin{x}}2\cdot\frac{1+\cos{x}}{\cos{x}}=\sin\frac{x}2\cos\frac{x}2\cdot\frac{1+\cos{x}}{\cos{x}}=\tg\frac{x}2\cos^2\frac{x}2\cdot\frac{1+\cos{x}}{\cos{x}}=

=\tg\frac{x}2\cdot\frac{1+\cos{x}}2\cdot\frac{1+\cos{x}}{\cos{x}}=2\tg\frac{x}2\cdot\frac{(1+\cos{x})^2}{4\cos{x}}\ge2\tg\frac{x}2

Az ábra szerint, ha a kör sugara 1,akkor T_{OAB}=\frac{x}4 és T_{OAC}=\frac{\tg\frac{x}2}2 és látható, hogy TOAB\leqTOAC, ezért

2\tg\frac{x}2\ge{x}

Előzmény: [289] Csimby, 2004-03-24 00:40:29
[291] lorantfy2004-03-24 13:26:07

Kedves Zoltán!

Kösz a figyelmeztetést. Neked jobb a memóriád, én nem emlékeztem rá. Ráadásul a megoldásban utalnak az általános megoldhatóság feltételére is. Azért remélem lesz olyan, aki ettől függetlenül megcsinálja.

Előzmény: [290] SchZol, 2004-03-24 12:32:51
[290] SchZol2004-03-24 12:32:51

Kedves László!

A 64.feladat 2001. novemberében ki volt tűzve a Kömalban (P.3467.), annyi eltéréssel, hogy ott 6 óra volt az út oda-vissza.

Üdv, Zoli

Előzmény: [288] lorantfy, 2004-03-23 22:56:49
[289] Csimby2004-03-24 00:40:29

65.feladat Bizonyítsuk be, hogy ha 0<x<\Pi/4, akkor x<(tgx + sinx)/2.

66.feladat Bizonyítsuk be, hogy tg 1°, sin 1°, cos 1° irracionális.

67.feladat (a+b+c)x2-2(ab+bc+ac)x+3abc=0 és 0<a<b<c Bizonyítsuk be, hogy az egyenlet egyik gyöke a és b közé a másik pedig b és c közé esik.

A feladatok a Nemzetközi Magyar Matematikai Versenyen voltak kitűzve, úgyhogy aki volt az ismeri a megoldásokat aki nem, annak meg jó szórakozást.

[288] lorantfy2004-03-23 22:56:49

Kedves Károly és Fórumosok!

Éppen ideje volt már „földobni” ezt a témát! Ezt a feladatot én is hallottam már többféle változatban, cipókkal, tojásrántottával, de fahasábokkal és spórral még nem. Bennem meleg elmékeket kelt az utóbbi, de sokan szerintem már azt sem tudják mi az. ( Spór = spórhelt = sparhert = takaréktűzhely )

64. feladat: Valaki dombos úton kerékpárral ment A helyről B-be majd ugyanott vissza. Vizszintes úton v = 16 km/h, lefelé u = 24 km/h, felfelé pedig w = 12 km/h sebességgel haladt. Oda-vissza összesen 3 órát kerékpározott. Mekkora az AB távolság?

Akinek ez nagyon könnyű lenne:

64.b feladat: Milyen 60 km/h > u > v > w egész számokra van a feladatnak egyértelmű megoldása?

Előzmény: [287] Hajba Károly, 2004-03-22 15:19:25
[287] Hajba Károly2004-03-22 15:19:25

Üdv Mindenki!

Felhozandó a Téma bedobok egy ide illő és egyszerű, akár az "Ujjgyakorlatok"-ba is illő 63. feladatot:

Három barátnő főzéshez készül, az egyik 5 db fát, a másik 3 db fát hozzott a spórba és így mindhármójuk megfőzött. A harmadik, mivel nem volt tüzifája, 8 forinttal járult hozzá a tüzifa költségekhez. A másik két barátnő milyen arányban osztozik igazságosan a pénzen?

HK

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]