Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[3247] bily712010-02-14 22:12:36

Ezt kapjuk:

(p-1)\equiv2\frac{p-1}{2}\equiv3\frac{p-1}{2}\equiv...\equiv\frac{p-1}{2}\frac{p-1}{\frac{p-1}{2}}\equiv-1(\mod{p}

.

Két eset lehetséges, első:

2 | \frac{p-1}{2}, ekkor van \frac{p-1}{2} darab számpárunk, amelyek szorzata ab\equiv-1(mod p), ha behelyettesítünk, akkor ezt kapjuk:

(p-1)!\equiv(-1)^{\frac{p-1}{2}}\equiv-1(\mod{p})

.

Második:

2|\frac{p-1}{2}, ekkor létezik a, hogy a2\equiv-1(mod p), de akkor (p-1)2\equiv-1(mod p). Így kapunk \frac{p-1}{2}+1 darab számpárt, amelyek szorzata ab\equiv-1(mod p), és mivel 2 | \frac{p-1}{2}+1, ezért, ha behelyettesítünk, ezt kapjuk:

(p-1)!\equiv(-1)^{\frac{p-1}{2}+1}\equiv-1(\mod{p})

.

Előzmény: [3243] Fálesz Mihály, 2010-02-13 12:38:17
[3246] jonas2010-02-14 17:18:58

Ne viccelj már. Ha végtelen sok kongruenciát használhatsz, és csak a modulusokra van megkötés, akkor nagyon sok megoldás van, mert akár minden kongruenciával elég egy egész számot lefedned.

Előzmény: [3244] bily71, 2010-02-13 12:46:49
[3245] Róbert Gida2010-02-14 16:09:01

A 0-t nem fedted le, ha p(n) az n-edik prím.

Előzmény: [3244] bily71, 2010-02-13 12:46:49
[3244] bily712010-02-13 12:46:49

Triviális megoldás az

x1\equiv1(mod p1)

x2\equiv2(mod p2)

...

xn\equivn(mod pn),

kongruenciarendszer, ahol n végig fut a természetes számokon, pn>n és a prímek páronkét különböznek.

A p1<p2<...<pn nem szükséges feltétel, pn itt nem az n-edik prímet jelöli és nem szükséges minden prímet felhasználni, akár végtelen sok is kimaradhat.

Egy másik:

x1\equiva1(mod p1)

x2\equiva2(mod p2)

x3\equiva3(mod p3)

...

xm\equivam(mod pm)

xm+1\equivb1(mod pm+1)

...

xm+n\equivbn(mod pm+n),

ahol bi pi valamely maradékosztálya, bi és bj nem feltétlenül különböző számok, bn<pm+n és bn az n-edik olyan természetes szám, amely nem elégít ki p1-től pm-ig egy kongruenciát sem, pm nem az m-edik prím és p1<p2<...<pm+n itt sem szükséges feltétel, és itt sem szükséges minden prímet felhasználni.

1. Van-e több megoldás?

(Szerintem nincs a jonas által [3239]-ben ismertetett okok miatt.)

Nevezzünk részleges lefedőrendszernek egy olyan kongruenciarendszert, ahol létezik k természetes szám, hogy a k-nál nagyobb természetes számok mindegyike kielégít valamely kongruenciát, azaz k fölött a rendszer minden számot lefed.

2. Konstruálható-e véges, vagy végtelen részleges inkongruens lefedőrendszer, ha minden modulus prím?

3. Konstruálható-e véges, vagy végtelen részleges lefedőrendszer, ha minden modulus prím, és minden prímet kétszer használunk fel?

Elnézést, ha bárkit is untatok.

Előzmény: [3241] bily71, 2010-02-12 22:53:59
[3243] Fálesz Mihály2010-02-13 12:38:17

Új gondolkodnivaló.

Legyen ismét p prím. A Wilson-tétel mintájára, párosítsuk össze azokat a modulo p maradékokat, amelyek szorzata -1:


1 \cdot (p-1) \equiv 2 \cdot \frac{p-1}{2} \equiv ... \equiv -1 ~ (\mod p).

Milyen eredményt kapunk ebből?

Előzmény: [3234] bily71, 2010-02-11 17:28:19
[3242] Fálesz Mihály2010-02-13 12:12:33

Írjuk inkább így:


a = \frac{(x-z)y^\alpha + (y-x)z^\alpha + (z-y)x^\alpha}{
(y-x)(z-x)(z-y)}.

Ha 0<x<y<z, akkor a nevező pozitív.

Ha \alpha\le0 vagy \alpha\ge0, akkor az x^\alpha függvény konvex, a három pontra illesztett parabola felfelé áll, tehát a\ge0.

Ha pedig 0\le\alpha\le1, akkor x^\alpha konkáv, a parabola lefelé áll, tehát a\le0.

Előzmény: [3240] Lóczi Lajos, 2010-02-12 22:03:59
[3241] bily712010-02-12 22:53:59

És ha végtelen sok kongruenciából álló rendszerről van szó ugyanezen feltételekkel?

Előzmény: [3239] jonas, 2010-02-12 21:57:23
[3240] Lóczi Lajos2010-02-12 22:03:59

a=-\frac{-y x^{\alpha }+z x^{\alpha }+x y^{\alpha }-x z^{\alpha }-z y^{\alpha }+y z^{\alpha }}{(x-y) (x-z) (y-z)}

Előzmény: [3237] Fálesz Mihály, 2010-02-12 11:31:26
[3239] jonas2010-02-12 21:57:23

Nyilván nem, mert a modulusok relatív prímek, így mindegyik sorozat tagjaihoz egyet hozzáadva a kapott sorozatoknak van metszetük, és az ebben lévő számok egyik eredeti sorozatban sincs benne.

Előzmény: [3238] bily71, 2010-02-12 21:01:37
[3238] bily712010-02-12 21:01:37

Konstruálható-e inkongruens lefedőrendszer csak prím modulusú tagokból?

[3237] Fálesz Mihály2010-02-12 11:31:26

Sikerült valakinek kifejezni az a együtthatót az x,y,z,\alpha számokkal?

Előzmény: [3226] Fálesz Mihály, 2010-02-10 10:41:39
[3236] Róbert Gida2010-02-12 00:44:36

De, halálismert. Specmatos gimnáziumban is ugyanezt a bizonyítást mondják el, latinnégyzetes rizsa nélkül.

Előzmény: [3231] bily71, 2010-02-11 12:49:08
[3235] Sirpi2010-02-11 18:03:18

m2mm úgy érti, hogy a bizonyítás ilyen hosszúságban elmondható (gyakorlatilag változatlan formában) úgy, hogy nem ejted ki azt a szót, hogy latin négyzet. Mellesleg én is ezt a bizonyítást ismerem a tétel "alap" bizonyításának.

Előzmény: [3234] bily71, 2010-02-11 17:28:19
[3234] bily712010-02-11 17:28:19

Annyi köze van a latin négyzetekhez, hogy ha nem latin négyzetekről lenne szó, akkor nem biztos, hogy tudnánk párokat képezni, ugyanis nem lenne biztosított, hogy minden sorban szerepeljen az egyes, főleg, hogy csak egyszer, biztosítva a párok egyértelműségét, elvégre definíció szerint egy n×n-es latin négyzet az 1-től n-ig terjedő egész számokat tartalmazza úgy, hogy minden sorában és oszlopában egy szám csak egyszer szerepel.

Előzmény: [3233] m2mm, 2010-02-11 14:52:08
[3233] m2mm2010-02-11 14:52:08

Ez korrekt megoldás, de ennek valójában semmi köze a latin négyzetekhez. Egyszerűen párokat képezel, ez az egyik legismertebb bizonyítása a tételnek.

Előzmény: [3231] bily71, 2010-02-11 12:49:08
[3232] bily712010-02-11 13:01:12

Valóban elegánsabb megfogalmazás.

Előzmény: [3230] Róbert Gida, 2010-02-10 22:46:58
[3231] bily712010-02-11 12:49:08

Ha életedben nem hallottad, hogy a latin négyzetek segítségével a Wilson-tétel bizonyítható, ez bizonyára érdekes lesz számodra, és legalább nem "halál ismert", legalábbis általad, (itt most az idézőjel nem iróniát, hanem tényleges idézést jelöl).

Legyen p\inP, azaz prím. Képezzünk p maradékosztályaiból, a 0-át kihagyva szorzótáblát. Ekkor a táblázat latin négyzet, ezt már [3187]-ben beláttuk.

Ennek az a következménye, hogy minden a-hoz létezik egy, és csakis egy b szám, hogy

ab\equiv1(mod p),

ahol a és b p egy-egy maradékosztálya.

Az a=b csak a=1, vagy a=p-1 esetén fordulhat elő, minden más esetben a\neb, ugyanis, ha

a2\equiv1(mod p),

akkor

a2-1\equiv0(mod p),

de akkor p nem lehet prím, mert

a2-1=(a-1)(a+1)\equiv0(mod p).

Ennek az a következménye, hogy az 1<a<p-1 maradékosztályok párokba rendezhetőek, így lesz \frac{p-3}{2} darab olyan számpárunk, hogy

aibj\equiv1(mod p).

Ezeket a számpárokat helyettesíthetjük 1-gyel, így a következőt kapjuk:

(p-1)!=1.2.3...(p-3)(p-2)(p-1)=1.1...1.1(p-1)\equivp-1(mod p).

Q.E.D.

Előzmény: [3186] Róbert Gida, 2010-02-01 17:11:09
[3230] Róbert Gida2010-02-10 22:46:58

Igazán nem kötekedés akar lenni, de jobban szeretik úgy mondani, hogy p legyen páratlan prím.

Előzmény: [3216] bily71, 2010-02-07 22:31:14
[3229] lgdt2010-02-10 19:49:40

úgy értem, konvex

Előzmény: [3228] lgdt, 2010-02-10 19:46:38
[3228] lgdt2010-02-10 19:46:38

Látom, már megoldódott. Lehet, hogy senkit nem érdekel, de azért leírom, hogy hogyan jutottam megoldáshoz az undorítóan bonyolult gondolatmenetemmel:

Mivel f(\alpha) folytonos, ha \alpha>1-re lehetne negatív, akkor 0 is lenne valahol, azaz a determináns harmadik sorát ki lehetne hozni az első kettő \lambda1-gyel és \lambda2-vel súlyozott lineáris kombinációjaként. Ez pedig azt jelentené, hogy a t^\alpha függvényt három helyen is metszené a \lambda1+\lambda2t egyenes, ami - ahogy neked is ezen múlott - a függvény konkáv volta miatt nem lehetséges.

Előzmény: [3225] Ali, 2010-02-09 11:14:23
[3226] Fálesz Mihály2010-02-10 10:41:39

Még egy apróság, ami tanulságos lehet.

Legyen az egyszerűség kedvéért 0<x<y<z, és legyen p(t)=at2+bt+c az a másodfokú polinom, amire p(x)=x^\alpha, p(y)=y^\alpha és p(z)=z^\alpha.

a=?

Előzmény: [3227] Fálesz Mihály, 2010-02-10 10:34:19
[3227] Fálesz Mihály2010-02-10 10:34:19

A derivált használatát el lehet kerülni.

Ha az x,y,z számok különbözők, akkor


(x-z)y^\alpha + (y-x)z^\alpha + (z-y)x^\alpha =
(y-x) (z-y) \left(\frac{z^\alpha-y^\alpha}{z-y} -
\frac{y^\alpha-x^\alpha}{y-x}\right).

Ha \alpha\ge1 vagy \alpha\le0, akkor a t\mapsto t^\alpha függvény konvex, tehát az utolsó tényező nemnegatív.

Ha 0\le\alpha\le1, akkor t\mapsto t^\alpha konkáv, és az utolsó tényező nempozitív.

(Ez lényegében ugyanaz, mint Ali megoldása.)

 

Egy kapcsolódó KöMaL feladat itt olvasható.

Előzmény: [3225] Ali, 2010-02-09 11:14:23
[3225] Ali2010-02-09 11:14:23

Ha \alpha > 1, akkor f \ge 0, ha 0 < \alpha < 1, akkor f \le 0. Ha pedig \alpha =0 vagy =1, akkor f=0. Ha x=0, akkor triviális.

Legyen y=ux, z=vy=uvx. Feltehető tehát, hogy x > 0, u,v > 1

f(x, y, z):= (x - z)y^\alpha + (y - x)z^\alpha + (z - y)x^\alpha = x^{\alpha+1}u^\alpha(u-1)(v-1)(\frac{u^{1-\alpha}-1}{u-1}+\frac{v^\alpha-1}{v-1}-1)

Ismert, hogy konvex és differenciálható g fv-re \frac{g(t)-g(s)}{t-s} \ge g'(s), ahol t > s. Ha g konkáv, akkor az ellenkező irányú egyenlőtlenség áll fenn. Legyen g(x):=xa.

g konvex, ha a>1, illetve a<0, konkáv, ha 0<a<1. Ezért ha \alpha > 1, akkor \frac{u^{1-\alpha}-1}{u-1}+\frac{v^\alpha-1}{v-1}-1 \ge 1-\alpha + \alpha -1 = 0. Ha pedig 0 < \alpha < 1, akkor \frac{u^{1-\alpha}-1}{u-1}+\frac{v^\alpha-1}{v-1}-1 \le 1-\alpha + \alpha -1 = 0.

f-re is ugyanez igaz, mivel x^{\alpha+1}u^\alpha(u-1)(v-1) > 0.

Előzmény: [3201] sakkmath, 2010-02-05 15:18:09
[3224] Sirpi2010-02-08 22:11:17

Igazad van, elkapkodtam. És először én is Euler-Fermat-t írtam, csak nem mentette el a hsz-t, másodszorra meg már nem sikerült.

Előzmény: [3223] Róbert Gida, 2010-02-08 22:02:04
[3223] Róbert Gida2010-02-08 22:02:04

n=2,p=5-re nem igaz a kongruenciád. Ahhoz, hogy jó legyen \varphi(p)-1 kell a kitevőbe, továbbá p lehet páros is. És persze ezt nem p prím esetén Euler-Fermat tételnek hívják, és nem kis-Fermat tételnek.

Előzmény: [3221] Sirpi, 2010-02-08 10:52:51

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]