Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[3428] Lóczi Lajos2011-02-12 04:02:26

Adjunk (minél egyszerűbb és jól kezelhető) feltételt arra nézve, hogy egy f kétváltozós függvény mikor áll elő f(x,y)=g(x)h(y) alakban, alkalmas egyváltozós g és h függvényekkel.

[3427] jonas2011-01-26 21:43:17

Az 513. feladathoz először lássunk be egy rekurziót az U mátrix elemeire. Ez a C mátrixnál segített, tehát gondolhatjuk, hogy itt is beválik. Az összefüggés az lesz, hogy

un+1,k=2un,k-1-un-1,k

feltéve, hogy 1\lek. A k=0 esetre egyszerűen un+1,k=un-1,k. Ez egyszerűen abból következik, hogy a másodfajú Csebisev-polinomokra igaz a következő rekurzió.

Un+1(x)=2xUn(x)-Un-1(x)

Lássuk be ez utóbbit. Helyettesítsünk be x=cos \theta-t. (Hogy így esetleg nem minden x kapható meg, az lényegtelen, mert mindkét oldal polinom, tehát elég csak egy intervallumon belátni, hogy egyenlők.) Szorozzuk meg mindkét oldalt sin \theta-val. Így a következő azonosságot kell belátnunk.

sin ((n+2)\theta)=2cos \thetasin ((n+1)\theta)-sin (n\theta)

Ehhez pedig csak használjuk a sin (\alpha+\beta)=sin \alphacos \beta+sin \alphacos \beta képletet. Valóban:

sin ((n+2)\theta)=cos (2\theta)sin (n\theta)+sin (2\theta)cos (n\theta)=(-1+2cos2\theta)sin (n\theta)+2sin \thetacos \thetacos (n\theta)=

=2cos \theta(sin \thetacos (n\theta)+cos \thetasin (n\theta))-sin (n\theta)=2cos \thetasin ((n+1)\theta)-sin (n\theta).

Innen már megpróbálhatjátok ti kitalálni az 513. bizonyítását – az eredményt megsejteni könnyű, csak ki kell számolni kis értékekre.

Előzmény: [3368] jonas, 2010-11-23 22:19:07
[3426] jonas2011-01-24 20:13:24

Akkor PAL érdeklődésére tekintettel nézzük meg ezeket a feladatokat.

Kezdjük az 512. feladattal. Stray dog már elárulta a megoldást: a determináns 1. Ezt nem is nehéz belátni: detH=det(CCT)=(detC)2. Csakhogy C háromszögmátrix, mivel ha 0\len<k, akkor n-k<0 és n-k-2<0, így


\binom{n}{(n-k)/2} = \binom{n}{(n-k-2)/2} = 0,

tehát a C mátrix főátló fölötti elemei valóban nullák. Hasonlóan, ha 0\len=k, akkor


\binom{n}{(n-k)/2} = \binom{n}{0} = 1,

viszont


\binom{n}{(n-k-2)/2} = \binom{n}{-1} = 0,

így hát cn,k=1, tehát a mátrix főátlójában egyesek állnak. Ebből aztán detC=1 tehát valóban detC=1.

Mindezt persze akkor lehet könnyen megsejteni, ha előbb valamilyen kis N méretre konkrétan kiszámoljuk a mátrixot. Például ha N=12, akkor


{\bf C} = \left(\matrix{
1&0&0&0&0&0&0&0&0&0&0&0\cr
0&1&0&0&0&0&0&0&0&0&0&0\cr
1&0&1&0&0&0&0&0&0&0&0&0\cr
0&2&0&1&0&0&0&0&0&0&0&0\cr
2&0&3&0&1&0&0&0&0&0&0&0\cr
0&5&0&4&0&1&0&0&0&0&0&0\cr
5&0&9&0&5&0&1&0&0&0&0&0\cr
0&14&0&14&0&6&0&1&0&0&0&0\cr
14&0&28&0&20&0&7&0&1&0&0&0\cr
0&42&0&48&0&27&0&8&0&1&0&0\cr
42&0&90&0&75&0&35&0&9&0&1&0\cr
0&132&0&165&0&110&0&44&0&10&0&1
}\right);


{\bf H} = \left(\matrix{
1&0&1&0&2&0&5&0&14&0&42&0\cr
0&1&0&2&0&5&0&14&0&42&0&132\cr
1&0&2&0&5&0&14&0&42&0&132&0\cr
0&2&0&5&0&14&0&42&0&132&0&429\cr
2&0&5&0&14&0&42&0&132&0&429&0\cr
0&5&0&14&0&42&0&132&0&429&0&1430\cr
5&0&14&0&42&0&132&0&429&0&1430&0\cr
0&14&0&42&0&132&0&429&0&1430&0&4862\cr
14&0&42&0&132&0&429&0&1430&0&4862&0\cr
0&42&0&132&0&429&0&1430&0&4862&0&16796\cr
42&0&132&0&429&0&1430&0&4862&0&16796&0\cr
0&132&0&429&0&1430&0&4862&0&16796&0&58786\cr
}\right).

Most nézzük az 511. feladatot. Erre van egy nagyon érdekes kombinatorikus bizonyítás.

Először lássunk be egy rekurziót a C mátrix elemeire. Vegyük észre, hogy ha 0\len és 0<k, akkor cn+1,k=cn,k-1+cn,k+1; ha pedig 0\len, akkor cn+1,0=cn,1. Szóban ez azt jelenti, hogy a mátrixban minden elem a fölötte balra lévő és a fölötte jobbra lévő elem összege, de ha nincs fölötte balra lévő elem, akkor egyszerűen a fölötte jobbra lévő elemmel egyenlő.

Azt, hogy ez a rekurzió igaz, nem nehéz belátni, egyszerűen be kell írni a definíciót. Nézzük először az első esetet: legyen 0\len és 0<k. Ha n-k páratlan, akkor


c_{n+1,k} = \binom{n+1}{(n-k+1)/2} - \binom{n+1}{(n-k-1)/2} =


= \left(\binom{n}{(n+k+1)/2} + \binom{n}{(n+k+1)/2-1}\right) - 
\left(\binom{n}{(n+k-1)/2} + \binom{n}{(n+k-1)/2-1}\right) =


= \left(\binom{n}{(n+k-1)/2} - \binom{n}{(n+k-3)/2}\right) + \left(\binom{n}{(n+k+1)/2} - \binom{n}{(n+k-1)/2}\right) = 
c_{n,k-1} + c_{n,k+1};

ha viszont n-k páros, akkor cn+1,k=0=cn,k-1+cn,k+1. A második esetben, ha 0\len, akkor


c_{n+1,0} = 
\binom{n+1}{(n+1)/2} - \binom{n+1}{(n-1)/2} =


= \left(\binom{n}{(n+1)/2} - \binom{n}{(n+1)/2-1}\right) +
\left(\binom{n}{(n-1)/2} - \binom{n}{(n-1)/2-1}\right) =


= \binom{n}{(n+1)/2} - \binom{n}{(n-3)/2} =
\binom{n}{(n-1)/2} - \binom{n}{(n-3)/2} =
c_{n, 1}

(Egy kis csalás van itt: szó szerint ennek a szabálynak a mátrix jobb szélén nincs értelme, de szerencsére tekinthetjük a mátrixot a végtelen nagy mátrix sarkának, úgyhogy igazából nincs probléma.)

Most a meglepő észrevétel az, hogy a C mátrix elemeinek kombinatorikai jelentést lehet tulajdonítani. A cn,k elem ugyanis pontosan azt számolja le, hányféleképpen lehet n lépést tenni a számegyenesen az origóból úgy, hogy minden lépésben egyet balra vagy egyet jobbra lépünk, nem lépünk rá a negatív félegyenesre, és a végén a k-ba érkezünk. Azt, hogy valóban ezt számoljuk le, nem nehéz látni a fenti rekurzió alapján.

Vegyük most szemügyre ezt a képletet, ami szerepelt a kitűzésben: ha 0\lem,n akkor


h_{m,n} = \sum_{0\le k} c_{m,k}c_{n,k}.

Azt állítom, hogy hm,n éppen azt számolja le, hányféleképpen lehet a számegyenesen m+n lépés hosszú sétát tenni úgy, hogy az origóból indulunk és oda is érünk vissza, minden lépésben eggyel jobbra vagy eggyel balra lépünk, és sose lépünk a negatív félegyenesre. Valóban, legyen ugyanis k az a szám, ahol az m-edik lépésben lépünk. Ekkor az első m lépés cm,k féle lehet a c fent megadott értelmezése szerint. Másrészt az utolsó n lépés éppen cn,k féle lehet, mert ha ezt az utolsó n lépést visszafele játsszuk le, akkor az origóból indulunk, és a végén érünk a k-ba. Az is látható, hogy az első m és az utolsó n lépést egymástól függetlenül választhatjuk meg akárhogyan, ha már k értékét rögzítettük, minden lehetőséghez tartozik pontosan egy m+n lépéses séta. Így megkaptuk, hogy hm,n egyenlő az m+n hosszú, origóba érkező séták számával, ami tényel m+n függvénye.

Az 513. feladatot egyelőre nem lövöm le.

Előzmény: [3368] jonas, 2010-11-23 22:19:07
[3425] m2mm2011-01-23 17:01:59

523. feladat Egy egész együtthatós, normált polinom minden(komplex) gyökének abszolút értéke 1. Biz.: gyökei egységgyökök.

[3424] PAL2011-01-21 19:48:57

Kedves Tamás!

Remélem nem haragszol, hogy csatlakozom, de örömmel látom a feladatod, mert örülök annak, hogy téged is érdekelnek az efféle témák, az utóbbi hozzászólásokban kezd népszerű lenni ez a sin(nx) kifejtős téma, mely valahogy az én kedvencemmé is vált az utóbbi időben, ezért én is kiváncsian várom kitűzött feladatodra érkező megoldásokat.

Előzmény: [3423] D. Tamás, 2011-01-21 19:20:26
[3423] D. Tamás2011-01-21 19:20:26

522.feladat: Határozzuk meg azokat a pozitív egész n számokat, melyre sin (nx) felírható sin (x) polinomjaként!

Gondolom felsőbbéveseknek közismert ez a feladat, de én nemrég találkoztam egy feladat kapcsán ezzel a gyönyörűséggel. (Persze ha valaki komoly "fegyverekkel" rendelkezik pillanatok alatt kijön a megoldás.)

[3422] Lóczi Lajos2011-01-19 06:15:13

Egy valós függvény a 0 körül lokálisan invertálható, ha van olyan \delta>0 szám, hogy a függvény leszűkítése a [-\delta,\delta] intervallumra invertálható.

Valamely rögzített \alpha valós szám esetén tekintsük az f(x):=\alpha x+x^2 \sin\left(\frac{1}{x}\right) (ha x\ne0) függvényt, és legyen f(0):=0.

521. feladat. Adjuk meg az összes olyan \alpha valós számot, amelyre a fenti f függvény a 0 körül lokálisan invertálható.

[3421] lorantfy2011-01-15 21:03:57

520.feladat: Egy 24 órás, szokásos irányban járó és egy 12 órás, fordított számlapos, visszafelé járó falióra egymás mellett függenek. Mindkettő pontosan jár. A két órát egyszerre indítva nulla óráról mennyi idő múlva lesznek az órák percmutatói és óramutatói is párhuzamosak egymással és mennyi idő múlva lesznek merőlegesek egymásra?

[3420] Róbert Gida2011-01-07 17:48:49

A multifaktoriális amit írsz az megint különböző dolog, (iterált) faktoriálisról beszéltünk.

Előzmény: [3418] patba, 2011-01-07 17:21:26
[3419] Róbert Gida2011-01-07 17:45:06

Persze, akár én is írhatnék egy ilyen programot ami úgy számolja ki, ahogy te szeretnéd. A szebb az lenne, ha már egy létező compteralgebra program is így számolná ki.

A ^ és ! műveleti sorrendje meg programfüggőnek tűnik, ahogy írtam a PARI-GP-nél és a Maple-nél például különböző.

Előzmény: [3418] patba, 2011-01-07 17:21:26
[3418] patba2011-01-07 17:21:26

Ha mindkét program egy-egy sajátosságát(nincs multifaktoriális és hatvány nem alsóbbrendűbb, mint a faktor) felhasználva készítünk egy programot, az úgy fogja kiszámolni. Nem tudom, hogy létezik-e jelenleg ilyen program, de semmi sem zárja ki.

Viszont akkor a faktoriális, vagy a hatvány élvez előnyt műveleti sorrend szerint? Ez most már nem világos számomra.

Előzmény: [3417] Róbert Gida, 2011-01-07 16:48:13
[3417] Róbert Gida2011-01-07 16:48:13

Igen, de nálunk több faktoriális is van, például 22!!!-et három különböző programmal néztem meg, és egyik sem adja meg a (24!)! értéket, így egyik sem számol úgy ahogy azt te szeretnéd.

A probléma hasonló ahhoz, hogy abc kifejezést hogyan értékeljük ki: ä(bc) vagy (ab)c ként.

Előzmény: [3416] patba, 2011-01-07 15:28:49
[3416] patba2011-01-07 15:28:49

Leírtad egy hozzászólásban (jó gúnyosan), hogy a Mapple a hatványozást magasabb rendű műveletként kezeli, mint a faktoriálist, és neked csak és kizárólag egy program által igazolt összefüggés elfogadható ilyen téren.

Vagy most mire gondolsz?

Előzmény: [3415] Róbert Gida, 2011-01-07 13:41:00
[3415] Róbert Gida2011-01-07 13:41:00

Úgy látszik, hogy a műveleti sorrend (precedencia) csak nekem fontos.

Azt azért megkérdezhetem, hogy ezt manapság nem tanítják ált. iskolákban, gimnáziumokban? +,*-ra gondolok most.

Előzmény: [3407] patba, 2010-12-31 13:16:22
[3414] djuice2011-01-02 00:57:23

Besz@rok! :) Nem tudom elképzelni mit tököltem ezen fél órákat a felírással, hisz csak a mérleg elvet kell alkalmazni a feladat szövegének megfelelően. Mindegy, már megint bebizonyosodott, hogy mindig a bonyolultabbik oldalról közelítem a pofon egyszerű dolgokat. :)

(próbálkozva vmi ilyesmiket akartam felírni I. A-B=2; II. 2AB-B=0 persze hogy nem jó!)

Köszönöm szépen amúgy, már muszáj lesz vmi. tanárt fogadni magam mellé is. :)

Előzmény: [3411] Nánási József, 2011-01-01 11:11:39
[3413] Füge2011-01-01 22:09:54

n\ge22 esetén 9n<n! ezért én is a 99!!!!!!!!-re szavazok

[3412] ibiro2011-01-01 21:23:43

Erről mi a véleményetek 9^{9^{9^{9^{9^{9^{9^{9^{9^{9}}}}}}}}} ?

Előzmény: [3405] Tassy Gergely, 2010-12-31 12:48:41
[3411] Nánási József2011-01-01 11:11:39

Ha jól értem, egyenleteket akarsz?

Legyen x fiókunk.

Akkor az első esetbe a könyvek száma y=x+2

Második esetben pedig a könyvek száma y=2x-1

Ebből jön, hogy x=3 y=5

3 fiók és 5 könyv

bocsánat ha félre értettem a kérdésed.

Előzmény: [3410] djuice, 2011-01-01 01:55:15
[3410] djuice2011-01-01 01:55:15

Elnézést hogy ilyen gyermeteg feladvánnyal zavarok, de miközben fejben találgatva fél perc alatt rá lehet jönni a megoldásra, addig egyenletekkel felírni nekem nem sikerült az alábbi feladatot. :( (haverom 2.-os középsulis öccsének van feladva háziként!)

"Pista könyveit pakolja. Ha 1 könyvet 1 fiókba rak el, 2 könyvének már nem jut hely. Ha 1 fiókba 2 könyvet tesz, az utolsó fiókban már csak 1 könyv lesz. Hány könyve van Pistának?"

Első verzióra A-B=2 alakot tudtam felírni, de a 2. esetet sehogy sem tudjuk felírni. Igazából az érdekelne, miként kell gondolkodni a helyes felírást illetőleg?

Köszönöm!

[3407] patba2010-12-31 13:16:22

Igen, mert akkor a ! a kitevőbe kerül be. Ha nem a kitevőbe rakod, akkor 8!-nak kéne, hogy értelmezze. Megint oda jutottunk, ahol az előbb voltunk. Programnak ahhoz, hogy ne a kitevőben legyen, kell zárójel, kézírásban nem.

Előzmény: [3403] robertgidatestvere, 2010-12-31 12:37:34
[3406] robertgidatestvere2010-12-31 12:52:39

Igen, de nem az volt a kérdés, hogy te mit csinálsz a gépeden, van aki beszél a számítógéphez, és egy hangfelismerő program írja a szöveget a képernyőre.

A precedencia pedig igenis fontos, számomra egy program bizonyítja egyértelműen, hogy az a precedencia amit kívánsz az tényleg igaz. 2+3*4-et egy matekprogram sem fog 20-ként kiértékelni.

Előzmény: [3404] patba, 2010-12-31 12:43:32
[3405] Tassy Gergely2010-12-31 12:48:41

Valóban nem a programozási részére gondoltam, a 99!!!!!!!! elméletben kiszámítható ,,kézzel'' is. Persze vizsgálhatjuk azt a változatot is, ahol két !-jel nem állhat egymás mellett.

Előzmény: [3404] patba, 2010-12-31 12:43:32
[3404] patba2010-12-31 12:43:32

Olvasd el még egyszer a feladatot!(Írni én kézzel szoktam, számítógépen meg gépelni.) Nem programozási feladat, a pontosítás szerintem csak annak szólt, hogy végtelen jelet ne használjunk, meg hasonlóakat.

Az én tippem: 99!!!!!!!!

Előzmény: [3403] robertgidatestvere, 2010-12-31 12:37:34
[3403] robertgidatestvere2010-12-31 12:37:34

Az ötlet jó, de több probléma is van vele. Először egy olyan már létező programot kéne mutatni, amivel az adott kifejezés (elméletben) kiszámítható volna, és annyi lenne amit mondasz (plusz feltétel persze, hogy pozitív egésznek kell lennie a számnak).

Nekem már a precedencia sem világos, hogy ! vagy ^ van előrébb, bár ez programfüggőnek tűnik.

Ha PARI-GP-re gondoltál, akkor az bukta, mert a ^ jel nélkül ezt nem tudod bevinni, de egyébként sem müködne, mert itt például 2^3!=64 és nem 8!=40320. Mathematica 5.1-ben már n!!-t is multifaktoriálisként értelmezi, így ez már itt elbukik. Maple 12-ben rákérdez n!! esetén, hogy dupla faktoriálist kérsz, vagy a faktoriálist kétszer alkalmazva. De n!!! esetén nekem soha nem alkalmazza a faktoriálist háromszor. Így ez is bukta.

Előzmény: [3402] patba, 2010-12-31 11:44:39
[3402] patba2010-12-31 11:44:39

99>9! úgyhogy ez biztosan nem jó.

Előzmény: [3401] Róbert Gida, 2010-12-31 03:37:25

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]