Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[3799] Zilberbach2013-10-13 19:29:17

Nem fér bele a képernyőbe.

Előzmény: [3798] Zilberbach, 2013-10-13 19:28:34
[3798] Zilberbach2013-10-13 19:28:34

Google Chrome. Most már nagyon szélesre húzódik a téma ablaka is.

Előzmény: [3797] n, 2013-10-13 17:51:14
[3797] n2013-10-13 17:51:14

A böngésző ismerete nélkül nehéz megmondani...

Előzmény: [3796] Zilberbach, 2013-10-12 19:48:25
[3796] Zilberbach2013-10-12 19:48:25

Ebben a témában nem tördeli be a túl hosszú sorokat a gépem/programom. Mi lehet az oka?

[3795] Sinobi2013-10-12 01:30:53

Kaptam egy "érdekes" geometria feladatot, nem tudom mit lehetne vele kezdeni, ami nem kórdináta.

a, Ha van egy e egyenes, és egy p parabola, szerkeszd meg azokat a pontokat a parabolán, amelyek felezőmerőlegese az egyenes. (eddig nem volt nehéz)

b, Bizonyítsd be, hogy ha van egy parabolán három pontpár (húr), amelyek felezőmerőlegesei egy ponton mennek át, akkor ha a hat pontot a parabola tengelyirányában elaffinítjuk, akkor az így kapott pontok felezőmerőlegesei is egy ponton fognak átmenni.

c, Ily módon egy parabola és egy affinitás meghatároz egy \phi tranformációt, melyben minden Pi pont képe egy olyan Pi' pont lesz, hogy a parabolának minden olyan húrjának, amelynek a felezőmerőlegese átment Pi-n, a képe egy olyan húr, amelynek a felezőmerőlegese átmegy Pi'-n. Bizonyítsd be, hogy \phi egyenestartó.

[3793] csábos2013-10-11 12:57:17

Kedves HOA!

A probléma Steinerig és Fermat-ig visszavezethető. http://en.wikipedia.org/wiki/Steinertreeproblem Sőt, mér a Gyilkos számok egyik jelenetében is láttam. 2. évad Toxin című rész, 31. perctől. A kérdésem igazából arra vonatkozott, hogy a komplex számos megoldás-felvetés honnan ered. Ami még igazán érdekel: Minél korábbi előfordulása az

x2+xy+y2=a

x2+xz+z2=b

z2+zy+y2=c

típusú feladatnak.

Tud valaki erről valamit?

Előzmény: [3792] HoA, 2013-10-10 16:48:43
[3792] HoA2013-10-10 16:48:43

Hát igen, mint a Ludas Matyi mottója mondta. „Nincsenek régi viccek, csak öreg emberek. Egy újszülöttnek minden vicc új” Nem emlékszem, hol láttam először, talán valamelyik Reiman könyvben. Most az interneten rákeresve ezt találtam legelőször:

Nemzetközi matematikai diákolimpiák (1959–2003)books.google.hu/books?isbn=9639548049 610 – 611. old.

http://books.google.hu/books?id=nNihkOMB8qYC&pg=PA610&lpg=PA610&dq=izogon%C3%A1lis+pont&source=bl&ots=ocxjZNxUjz&sig=g6aMbTyKXDcQBRh57RTWfDsgGfM&hl=hu&sa=X&ei=Fa5WUoy9HauX5ATV84HIBw&ved=0CGQQ6AEwCw#v=onepage&q=izogon%C3%A1lis%20pont&f=false

A lényeg: A 120 fokosnál nem nagyobb szögű háromszög síkjának az a pontja, melynek a csúcsoktól mért távolságösszege minimális, az izogonális pont. Bizonyítás: Legyen az ABC háromszög síkjának egy pontja P. Forgassuk el az ABP háromszöget B körül 60 fokal , új helyzete A’BP’ ( A’ az AB egyenes C-t nem tartalmazó oldalán ) . Ekkor A’P’ = AP, BPP’ háromszög szabályos, BP = BP’ = PP’ . A P pont csúcsoktól mért távolságainak összege AP + BP + CP = A’P’ + P’P +PC , vagyis egyenlő az A’P’PC töröttvonal hosszával. Mivel A’ és C helyzete P-től független, ez a hossz akkor a legkisebb, ha ha egybeeseik az A’C szakasszal. A minimális távolságösszeget adó P0 pont ( és 60 fokos elforgatottja , P0 ) rajta van A’C –n, BP0P0\Delta szabályos, így BP0C\angle=120o és BP0’A’\angle=120o miatt BP0A\angle is 120o

[3791]-re: Nézd meg, mi a helyzet, ha ABC\angle>120o

Előzmény: [3790] csábos, 2013-10-09 21:17:40
[3791] csábos2013-10-09 22:21:43

Természetesen a létezés bizonyításánál. Kavics mindig a tanteremben röpködő piros krokodilokkal példálózott. Ha azok léteznek, akkor minden igaz. A konstrukció mindig nehezebb a bizonyításnál. Ha feltesszük, hogy valami van, arról már könnyebb bármit igazolni.

Előzmény: [3781] HoA, 2013-09-04 23:31:16
[3790] csábos2013-10-09 21:17:40

Kedves HoA!

Nagyon érdekelne, hogy mitől közismert ez a feladat. Ha megírnád, örülnék.

Csábos

Előzmény: [3781] HoA, 2013-09-04 23:31:16
[3789] w2013-10-04 23:57:23

Szerintem reális a 2% becslés.

Előzmény: [3786] koma, 2013-10-04 20:22:50
[3788] HoA2013-10-04 22:04:07

Azért írta ki furán, mert a százalék jelet megjegyzés kezdetének veszi, és mindent elhagy, amit a sorban utána írsz . Valamelyik témában nemrég volt szó róla. Tehát így kell írni, hogy látható legyen: \%

A feladattípus elég közismert. Nekem van egy egész kis könyvem belőlük. És persze egy táblázatos módszerrel elég automatikusan megoldható.

Az, hogy az emberek hány %-a képes megoldani, kicsit nézőpont kérdése. Készséggel elhiszem, hogy ha 100 embernek feladod, csak 1-2 -től kapsz megoldást. Nem azért, mert képtelen lenne megoldani, de nem érdekli annyira, hogy végigküzdje. Más lenne a helyzet, ha az élete - na jó, a havi fizetése függne tőle.

Előzmény: [3787] koma, 2013-10-04 20:25:34
[3787] koma2013-10-04 20:25:34

-De furán írta ki-, szóval állítólag az emberek két százaléka tudja megoldani, és szerintem azért jóval többen képesek lehetnek rá, ti hogyan vélekedtek?

Előzmény: [3786] koma, 2013-10-04 20:22:50
[3786] koma2013-10-04 20:22:50

Sziasztok, a véleményetekre lennék kíváncsi, szerintem nagyon sokan ismeritek a feladványt:

Ezt a feladatot Einstein írta. Azt mondta, hogy az emberek 98

Tények: 1. 5 ház van, különböző színüek. 2. Minden házban él egy-egy ember, mindegyik más nemzetiségű. 3. Az öt tulajdonos különböző italokat fogyaszt, különféle cigit szív és más-más állatot tart. 4. Nincs két olyan tulajdonos aki ugyanazt az állatot tartaná, ugyanazt a cigit szívná, vagy ugyanazt az italt inná.

1. A brit a piros házban lakik. 2. A svéd kutyát tart. 3. A dán teát iszik. 4. A zöld ház a fehér ház bal oldalán van. 5. A zöld ház tulajdonosa kávét iszik. 6. Az a személy aki Pall Mall-t szív madarat tart. 7. A sárga ház tulajdonosa Dunhill-t szív. 8. Az az ember aki a középső házban lakik tejet iszik. 9. A norvég az első házban lakik. 10. Az ember aki Blend cigit szív amellett lakik aki macskát tart. 11. Az az ember aki lovat tart amellett lakik aki Dunhill cigit szív. 12. A tulaj aki Blue Mastert szív, sört iszik. 13. A német Prince-t szív. 14. A norvég a kék ház mellett lakik. 15. Az ember aki Blend-et szív, a vizet ivó ember szomszédja.

-Én 20-25 perc alatt megoldottam, de nem érzem úgy, hogy a felső 2

[3785] w2013-10-04 14:47:18

Legyen X az ABC háromszög belső pontja, melyre XA.BC=XB.AC=XC.AB. Legyen XBC_{\Delta}, XCA_\Delta, XAB_\Delta beírt körének középpontja rendre P, Q, R. Mutassuk meg, hogy AP, BQ, CR egy ponton halad át.

[3784] Ali2013-09-13 10:38:22

Legyen g(x)=f(x)-x, és gn(x)=g(g(...g(x)...)). Az értelmezési tartományra tett megszorítás miatt g(x)\ge0 \forallx\ge0 esetén.

Megoldva a gn+2(x)+gn+1(x)-2gn(x)=0 másodfokú lineáris rekurziót ( g0(x):=x, g1(x)=g(x) ),

gn(x)=(-2)n[x-g(x)]/3 +[2x+g(x)]/3, n\ge2

Ha x>g(x), akkor elég nagy páratlan n-re, míg x<g(x) esetén elég nagy páros n-re ellentmondás. Így g(x)=x és f(x)=2x.

Előzmény: [3777] w, 2013-09-02 22:15:48
[3783] juantheron2013-09-10 05:57:06

Thanks HoA

[3782] juantheron2013-09-10 05:54:02

Solution for real a,b,c in

a[a]+c{c}-b{b}=0.16

b[b]+a{a}-c{c}=0.25

c[c]+b{b}-a{a}=0.49

Where [x]= Integer part of x

and {x}= fractional part of x

[3781] HoA2013-09-04 23:31:16

A :-) -ból sejtem, észrevetted, hogy ez valójában a közismert izogonális pontos megoldás átírva komplexre.

A feladat talán éppen ezért érdekes: Hogyan derül ki a komplex megközelítésből, hogy a módszer csak 120o -nál kisebb szögű háromszögre működik?

Előzmény: [3780] Fálesz Mihály, 2013-09-04 18:44:31
[3780] Fálesz Mihály2013-09-04 18:44:31

Azért én szívesen látnék egy elemi megoldást izogonális ponttal... :-)

Előzmény: [3779] HoA, 2013-09-04 10:54:29
[3779] HoA2013-09-04 10:54:29

 f(z) = \left|z-1-i \right| + \left| z+2-3i\right| + \left|z+3+2i \right| = \left| z-(1+i)\right| + \left| z-(-2+3i))\right|+ \left|z-(-3-2i) \right| = \left| z-t\right| +\left| z-u\right|+ \left| z-v\right| , ahol t=1+i,u=-2+3i,v=-3-2i Legyen továbbá z'=z-u,t'=t-u,v'=v-u .  f(z) = \left| z'-t'\right| +\left| z'\right|+ \left| z'- v'\right| . Felhasználjuk, hogy \left|e^{i\phi}  \right|= 1 és \left|1 -e^{i\pi /3}\right|  = 1 ( ujjgyakorlat ) . Legyen z'' = z' e^{i\pi /3} t'' = t' e^{i\pi /3} Ekkor

 \left| z'-t'\right| = \left| (z'-t') e^{i\pi /3} \right| = \left| z''-t''\right| = \left| t''-z''\right|

 \left| z' \right| = \left| z' (1 -e^{i\pi /3})\right| = \left| z'-z''\right|= \left| z''-z'\right|

és innen a sokszög egyenlőtlenség miatt

 f(z) = \left| t''-z''\right| + \left| z''-z'\right|  + \left| z'- v'\right| \ge \left| t''- v'\right|

Numerikusan t' = 3-2i , v' = -1 -5i , t'' = (3-2i)(cos \pi/3 + i sin \pi/3) = (3-2i)(1/2 + i \sqrt{3}/2) = (3 + 2 \sqrt{3})/2 + i (3\sqrt{3}-2)/2  t'' - v' = (5 + 2 \sqrt{3})/2 + i (3\sqrt{3}+8)/2 . \left| t''-v'\right| ~ 7,84

Feladatnak hagyom annak bzonyítását, hogy létezik is olyan z' - és innen z - érték, melyre f(z) felveszi minimális értékét – például a megfelelő z kiszámításával.

Előzmény: [3775] juantheron, 2013-09-02 21:15:26
[3777] w2013-09-02 22:15:48

A következő függvényegyenlet leginkább a megoldási módszere miatt hasznos/érdekes (f:{\bf R}_{\ge0}\to{\bf R}_{\ge0}):

f(f(x)-x)=2x.

[3775] juantheron2013-09-02 21:15:26

Minimum value of \left|z-1-i\right| + \left|z+2-3i\right| + \left|z+3+2i\right|,

where z=x+iy and i=sqrt-1

[3774] w2013-08-11 16:48:19

Igen. Sok, az előbbihez hasonló feladat generálható. Olyan \alpha szám kell nekünk, melyre az

S=\sum_{(x,y)\in P} \alpha^{x+y} (*)

összeg a lépések során invariáns marad, ahol P jelöli a zsetonok helyeinek halmazát. Az előbbi feladatban \alphax+y=\alpha(x+1)+y+\alphax+(y+1)-ra redukálódik a (*) egyenlet, ahol \alpha=\frac12 megfelel célunknak. Miért is? Úgy általában, olyan \alpha számra van szükségünk, melyre

W=\sum_{x=0}^\infty \sum_{y=0}^\infty \alpha^{x+y}\in(-\infty;+\infty),

azaz az első síknegyed súlya véges. Ez éppen \alpha\in(-1;+1) esetén következik be, és ekkor

W=\sum_{x=0}^\infty\sum_{y=0}^\infty \alpha^x\cdot \alpha^y=\sum_{x=0}^\infty \alpha^x\cdot\left(\sum_{y=0}^\infty \alpha^y\right)=\left(\frac{1}{1-\alpha}\right)^2

a mértani sor összegzőképlete szerint. A feladatokhoz pedig a P(x) polinomot rendelhetjük, amiről tudjuk, hogy van -1 és +1 között nemnulla gyöke, és tükrözi a zsetonok változását, azaz erre redukálódik a (*) egyenlet egy lépésnyi változás során. A VV-s példában ez a polinom P(x)=2x1-1 volt.

Aki ismer további alkalmazásokat erre a módszerre, örömmel olvasnám azokat.

Előzmény: [3771] Micimackó, 2013-08-07 13:22:20
[3773] aaaa2013-08-07 21:04:37

b)-re butaság, az pozitív egészekre igaz.

Előzmény: [3772] aaaa, 2013-08-07 20:19:50
[3772] aaaa2013-08-07 20:19:50

a) ez ekvivalens n2 darab eredeti feladatbeli (kezdőhelyzet)->(véghelyzet) lehet-e kérdés megválaszolásával.

b) pl. (1;1)-re raksz, erre nem tudod az operációt alkalmazni.

Előzmény: [3770] w, 2013-08-03 14:03:32

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]