Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[3949] Fálesz Mihály2015-01-21 13:47:48

Szindbád unokája, André házasodik. A vendéglátó kalifa felajánlotta neki, hogy egy tradícionális, de annál szórakoztatóbb játék keretében hozzáadja az egyik szépséges lányát. Egy ennyire nagylelkű ajánlatot bárdolatlanság lenne visszautasítani -- az életébe kerülne -- így belemegy a játékba. Sajnos André még soha egyik lányt sem látta, csak annyit tud, hogy a kalifának 365 lánya van.

A játék szabályai a következők. A következő évben a kalifa minden reggel elbújtatja az egyik lányát a palota kertjének valamelyik bokra alatt. Azt, hogy a lányok milyen sorrendben jönnek, teljesen véletlenszerűen választja ki. Andrénak minden délelőtt 10 és 11 között fütyörészve, zsebre dugott kézzel körbe kell sétálnia a kertben. Amikor André melléje ér, a lánynak elő kell ugrania a bokorból, és fennhangon kiáltania kell: Szerelem vagy halál? Andrénak ekkor végleges, visszavonhatatlan IGEN-t vagy NEM-et kell mondania. Ha valakinek igent mond, ott helyben összeadják őket, és a játék véget ér.

André hallott róla, hogy nagyapja, a szintén világutazó Szindbád nagyon hasonló játékot nyert meg az akkori uralkodó udvarában. Szindbád maximalista volt, és mindig mindenből a legjobbat akarta; ebben a játékban is arra törekedett, hogy a legszebb lányt, Nagy Ő-t válassza ki. Szindbád stratégiája az volt, hogy az első néhány lánynak nemet mondott, és a többiek közül választotta az első olyat, aki az összes korábbi lánynál szebb volt. Kiszámította, hogy Nagy Ő megtalálására a legnagyobb, körülbelül &tex;\displaystyle 36,87\%&xet; esélye akkor van, ha az első 134 lánynak mond automatikusan nemet. Szindbádnak mázlija volt: sikerült Nagy Ő-t feleségül vennie.

De André arról is hallott, hogy a kalifa egy másik nevezetes vendége, Behrám herceg, aki megpróbálta Szindbád módszerét követni, hogyan járt pórul. A herceg esetében a legszebb lány a 129-edik volt a sorban, így nemet mondott neki és az utána következő összes többi lánynak is. Végül csak úgy kerülhette el a lefejezést, hogy feleségül vette az utolsó napon sorra került, pelyhes állú Koncsítát.

Ezért André, hogy a siker esélyét javítsa, azt a valamivel kisebb célt tűzi ki, hogy a három legszebb lány, Nagy Ő, Kis Ő és Félkövér Ő valamelyikét válassza ki. Stratégiája a következő: az évet négy évszakra osztja (tél, tavasz, nyár, ősz), ezek rendre &tex;\displaystyle X&xet;, &tex;\displaystyle Y&xet;, &tex;\displaystyle Z&xet;, illetve &tex;\displaystyle 365-X-Y-Z&xet; napból állnak. A téli időszakban hűvösen csak megfigyel, mindenkit ki fog kosarazni. Ha tavasszal olyan lánnyal találkozik, aki az összes korábbi lánynál szebb, annak igent fog mondani, a többieknek nemet. Nyáron akkor mond igent, ha a lánynál legfeljebb egy még szebbet látott korábban; végül ősszel akkor mond igent, ha az aktuális lánynál legfeljebb két szebbet látott már.

1. Mekkora a valószínűsége annak, hogy André Nagy Ő-t, Kis Ő-t, illetve hogy Félkövér Ő-t veszi feleségül?

2. Hogyan válassza meg André &tex;\displaystyle X&xet;, &tex;\displaystyle Y&xet; és &tex;\displaystyle Z&xet; értékét, hogy a lehető legmagasabb valószínűséggel elérje célját?

[3948] w2015-01-11 09:18:29

Lefedhető-e a tér diszjunkt körvonalakkal? (Kömal N.11.)

[3947] csábos2014-11-13 23:04:29

Hanyadikos vagy?

Előzmény: [3945] Szegedi Balázs, 2014-11-13 15:01:18
[3946] w2014-11-13 19:00:02

A gondolkodásban sokat tud segíteni, ha időnként megállsz, és lecsupaszítod a feladatot.

Csak azt tudod variálni, hogy hányszor nyomod le a billentyűt. Tehát ezzel igazából egy számot gépelsz be...

Előzmény: [3945] Szegedi Balázs, 2014-11-13 15:01:18
[3945] Szegedi Balázs2014-11-13 15:01:18

Sziasztok srácok! Én még új vagyok ezen az oldalon, és lenne egy sorozatokkal kapcsolatos kérdésem! Na szóval a kérdés a következő: Hogyan tudok úgy sorozatot alkotni, hogy csak egy billentyűt használok hozzá,és egymás után több számot is leírok. Szóval ez egyfajta "1-es számrendszer" elvileg ez egy nagyon egyszerű feladat de én nem jöttem rá a megoldásra. a válaszokat előre is köszönöm:)

[3944] w2014-11-10 17:00:42

Szerintem lelőhetnéd.

Előzmény: [3943] gyula60, 2014-11-08 16:52:22
[3943] gyula602014-11-08 16:52:22

Csak segíteni szeretnék ennek az egyszerű feladatnak a megoldásában. Egy lehetséges megoldás, ha felhasználjátok a koszinusztétel mindhárom alakját. Majd a szinusztételt alkalmazva írjátok fel &tex;\displaystyle S_a+S_b+S_c&xet;-ét az oldalak függvényében.

Előzmény: [3940] w, 2014-10-23 11:39:16
[3942] w2014-10-23 12:27:00

"Teljesen rossz" - szerintem ki bírod javítani. :)

Előzmény: [3941] Róbert Gida, 2014-10-23 11:58:19
[3941] Róbert Gida2014-10-23 11:58:19

Ez egy teljesen rossz megoldás. &tex;\displaystyle p^2&xet; is oszthatja az &tex;\displaystyle a_j-a_i&xet; tényezőt, ahogy &tex;\displaystyle j-i&xet;-t is.

Előzmény: [3939] w, 2014-10-23 11:36:52
[3940] w2014-10-23 11:39:16

Adott egy háromszög, melynek szögei: &tex;\displaystyle A&xet;, &tex;\displaystyle B&xet; és &tex;\displaystyle C&xet;. Vezessük be a következő jelölést:

&tex;\displaystyle S_a=\cos^2 B+\cos^2 C+2\sin B\sin C\cos A,&xet;

és ciklikusan permutálva a szögeket adjuk meg &tex;\displaystyle S_b&xet; és &tex;\displaystyle S_c&xet; kifejezéseket.

Adott &tex;\displaystyle S_a&xet; és &tex;\displaystyle S_b&xet;. Határozzuk meg &tex;\displaystyle S_c&xet; értékét!

[3939] w2014-10-23 11:36:52

Leírok egy megoldásvázlatot a feladatra (aztán kiderült, hogy a Skljarszkij-Csencov-Jaglomban is pont ez szerepel).

Legyen &tex;\displaystyle p&xet; tetszőleges prímszám. Belátjuk, hogy &tex;\displaystyle p&xet; kitevője &tex;\displaystyle C=\prod_{1\le i<j\le n}(j-i)&xet;-ben legalább annyi, mint &tex;\displaystyle p&xet; kitevője &tex;\displaystyle P=\prod_{1\le i<j\le n}(a_j-a_i)&xet;-ben.

Jelölje minden &tex;\displaystyle r=0,1,\dots,p-1&xet;-re &tex;\displaystyle k_r&xet; azt, hogy hány &tex;\displaystyle a_i&xet; ad &tex;\displaystyle r&xet; maradékot &tex;\displaystyle p&xet;-vel osztva. Ekkor &tex;\displaystyle p&xet; kitevője &tex;\displaystyle P&xet;-ben az &tex;\displaystyle \binom 12=\binom 02=0&xet; jelöléssel

&tex;\displaystyle \sum_{r=0}^{p-1}\binom{k_r}2.&xet;

Ennek a minimumát keressük &tex;\displaystyle k_0+k_1+\dots+k_{p-1}=n&xet; feltétel mellett (&tex;\displaystyle k_r&xet; természetes szám). Ha valamely két &tex;\displaystyle k_r&xet; eltérése legalább &tex;\displaystyle 2&xet;, akkor azokat egymás felé mozgatva, az összeg csökkenni fog; ebből következik, hogy a minimális összeget akkor érhetjük el, amikor bármely két &tex;\displaystyle k_r&xet; eltérése legfeljebb &tex;\displaystyle 1&xet;. Ez éppen a &tex;\displaystyle C&xet;-ben előforduló &tex;\displaystyle p&xet;-kitevőnek felel meg.

Talán mégiscsak ez a legegyszerűbb megközelítés. Habár determinánsokkal kétségtelenül elegánsabb.

Előzmény: [3936] w, 2014-09-28 14:05:41
[3938] jonas2014-09-30 15:33:19

Aha, a te bizonyításod egyszerűbb. Eltér az enyémtől, mert te nem jobbról, hanem balról szorzod meg valamivel a Vandermonde determinánst, mégpedig egy Stirling-számokból álló háromszög-mátrixszal.

Előzmény: [3936] w, 2014-09-28 14:05:41
[3937] Fálesz Mihály2014-09-28 17:59:17

Szerintem nem olyan nehéz megsejteni a választ: az &tex;\displaystyle 0,1,2,\dots,n-1&xet; számokból készített szorzat (a legkisebb pozitív szorzat), vagyis &tex;\displaystyle 1!\cdot 2!\cdot\dots\cdot (n-1)!&xet; a legnagyobb közös osztó.

Előzmény: [3935] jonas, 2014-09-28 00:07:31
[3936] w2014-09-28 14:05:41

Szerintem nagyon természetes a bizonyításod. (Az elején nyilván nem &tex;\displaystyle \prod (l-k)&xet;, hanem &tex;\displaystyle \prod (a_l-a_k)&xet; van, de ez nem zavaró.)

Én eredetileg picit máshogy olvastam:

&tex;\displaystyle \prod_{1\le i<j\le n}\frac{a_j-a_i}{j-i}=\frac{\prod_{1\le i<j\le n}(a_j-a_i)}{\prod_{k=0}^{n-1} k!}=\left(\prod_{k=0}^{n-1}k!\right)^{-1}\cdot \left|\matrix{a_1^0 & a_2^0 & \dots & a_n^0\cr a_1^1 & a_2^1 & \dots & a_n^1 \cr a_1^2 & a_2^2 & \dots & a_n^2 \cr \dots & & & \dots \cr a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} }\right|=&xet;

&tex;\displaystyle =\quad \left|\matrix{\frac{a_1^0}{0!} & \frac{a_2^0}{0!} & \dots & \frac{a_n^0}{0!}\cr \frac{a_1^1}{1!} & \frac{a_2^1}{1!} & \dots & \frac{a_n^1}{1!} \cr \frac{a_1^2}{2!} & \frac{a_2^2}{2!} & \dots & \frac{a_n^2}{2!} \cr \dots & & & \dots \cr \frac{a_1^{n-1}}{(n-1)!} & \frac{a_2^{n-1}}{(n-1)!} & \dots & \frac{a_n^{n-1}}{(n-1)!} }\right|\quad =\quad \left|\matrix{\binom{a_1}0 & \binom{a_2}0 & \dots & \binom{a_n}0 \cr \binom{a_1}1 & \binom{a_2}1 & \dots & \binom{a_n}1 \cr \binom{a_1}2 & \binom{a_2}2 & \dots & \binom{a_n}2 \cr \dots & & & \dots \cr \binom{a_1}{n-1} & \binom{a_2}{n-1} & \dots & \binom{a_n}{n-1} }\right|\quad \in Z.&xet;

De a feladat megoldható Vandermonde-determinánsok nélkül is.

Előzmény: [3935] jonas, 2014-09-28 00:07:31
[3935] jonas2014-09-28 00:07:31

Megsejteni nehéz, de ha már tudom, hogy mi a várt megoldás, akkor nem olyan nehéz bebizonyítani. Mutatok egy vázlatot. Ez elég ronda, szeretnék látni szebb bizonyítást.

Először írjuk fel az általad kért szorzatot Vandermonde-determináns alakban.

&tex;\displaystyle {\rm det} {\bf V} = \prod_{1\le k<l\le n} (l-k) = \left|\matrix{ a_1^0 & a_2^0 & \dots & a_n^0 \cr a_1^1 & a_2^1 & \dots & a_n^1 \cr a_1^2 & a_2^2 & \dots & a_n^2 \cr \dots & & & \dots \cr a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} \cr }\right| &xet;

Speciálisan írjuk fel a nevezőt is ilyen alakban.

&tex;\displaystyle {\rm det} {\bf S} = \prod_{1\le k<l\le n} (l-k) = \left|\matrix{ 1^0 & 2^0 & \dots & n^0 \cr 1^1 & 2^1 & \dots & n^1 \cr 1^2 & 2^2 & \dots & n^2 \cr \dots & & & \dots \cr 1^{n-1} & 2^{n-1} & \dots & n^{n-1} \cr }\right| &xet;

Most a célunk belátni, hogy bármilyen &tex;\displaystyle a &xet; egész számra a &tex;\displaystyle {\bf g}_a = {(}a^0, a^1, a^2, \dots, a^{n-1}{)}^{\rm T} &xet; vektort fel lehet írni az utóbbi determináns oszlopvektoraiból egész együtthatós lineáris kombinációként. Ezt teljes indukcióval lehet belátni. Vegyük észre ugyanis, hogy bármely &tex;\displaystyle 0 \le k < n &xet; egész kitevőre

&tex;\displaystyle 0 = \sum_{0\le l\le n} (-1)^l \binom{n}{l} (a-l)^k &xet;

ez ugyanis az &tex;\displaystyle a^k &xet; sorozat &tex;\displaystyle n &xet;-edik különbségsorozatának az &tex;\displaystyle a &xet; indexű eleme. Ebből

&tex;\displaystyle 0 = \sum_{0\le l\le n} (-1)^l \binom{n}{l} {\bf g}_{a-l}. &xet;

Ebben az összegben az együtthatók egészek, és a két szélső vektor, &tex;\displaystyle {\bf g}_a &xet; és &tex;\displaystyle {\bf g}_{a-n} &xet; éppen &tex;\displaystyle \pm1 &xet; együtthatóval szerepel. Ha kivonjuk a szélső tagot, akkor a maradék összeg megadja a &tex;\displaystyle {\bf g}_a &xet; illetve &tex;\displaystyle {\bf g}_{a-n} &xet; vektort az előző &tex;\displaystyle n &xet; illetve a következő &tex;\displaystyle n &xet; vektor egész együtthatós kombinációjaként. Így minden &tex;\displaystyle {\bf g}_n &xet; vektort rekurzívan kifejthetünk előre (ha &tex;\displaystyle n &xet; pozitív) vagy hátra (ha &tex;\displaystyle n &xet; nem pozitív) addig, hogy csak a &tex;\displaystyle {\bf g}_1, \dots, {\bf g}_n &xet; vektorok kombinációiból álljon, és ebben az együtthatók egészek lesznek.

Ha ezt a &tex;\displaystyle {\bf V} &xet; mátrix minden oszlopára megtesszük, akkor &tex;\displaystyle {\bf V} &xet;-t felírtuk &tex;\displaystyle {\bf S} &xet; és egy egész együtthatós mátrix szorzataként, innen &tex;\displaystyle {\rm det} {\bf V} &xet; többszöröse &tex;\displaystyle {\rm det} {\bf S} &xet;-nek.

Előzmény: [3934] w, 2014-09-27 19:57:42
[3934] w2014-09-27 19:57:42

Igen, ez a megoldás. A feladat más szóval azt kéri, hogy bizonyítsuk be, hogy

&tex;\displaystyle \prod_{1\le i<j\le n}\frac{a_j-a_i}{j-i}&xet;

egész szám bármely &tex;\displaystyle a_1,a_2,\dots,a_n&xet; egész számokra.

Kíváncsi vagyok, hogy milyen megoldási ötleteket fogtok találni.

Előzmény: [3933] jonas, 2014-09-16 23:10:19
[3933] jonas2014-09-16 23:10:19

Nem ismertem, de érdekes feladat. Szerintem ez a sorozat a megoldás rá.

Előzmény: [3932] w, 2014-09-15 17:56:02
[3932] w2014-09-15 17:56:02

Kíváncsi vagyok, hányan ismerik:

Legyen &tex;\displaystyle n&xet; pozitív egész szám, és tekintsük bármely &tex;\displaystyle S=(a_0,\dots,a_n)&xet; egész számokból álló sorozathoz a

&tex;\displaystyle f(S)=\prod_{0\le i<j\le n}(a_j-a_i)&xet;

szorzatot. Ezzel az összes ilyen számsorozathoz egy-egy egész számot rendeltünk. Mi a legnagyobb olyan pozitív egész, amely minden &tex;\displaystyle f(S)&xet; számot osztja?

[3931] w2014-09-15 17:51:48

Erre lényegét tekintve csak egyetlen bizonyítást ismerek, de jó meggondolni, hogy hányféleképpen mondható el. Talán a legrövidebb magyarázat a következő.

Vegyük észre, hogy az egyenlet ekvivalens a következő nyilvánvaló ténnyel:

&tex;\displaystyle \left|\left\{(k,a)\in N^2:\quad 0<k^ta\le x^t\right\}\right|=\left|\left\{(k,b)\in N^2:\quad 0<k^{1/t}b\le x\right\}\right|,&xet;QED.

Megjegyzés. Ha nadorp gondolatmenetét akarjuk átvinni, a következő szemléletesebb modellel lehet a legérdekesebb elmondani (lásd akár a 2013-as IMO shortlist A4 feladatát). Rajzoljunk egy oszlopdiagramot a derékszögű koordinátarendszer első síknegyedébe, méghozzá úgy, hogy az &tex;\displaystyle x&xet;-tengelyen a &tex;\displaystyle k&xet;-adik egységszakasz fölé &tex;\displaystyle \left[\frac{x}{k^{1/t}}\right]&xet; magasságú oszlopot rajzolunk. Az oszlopok együttes területe így a jobb oldalt adja ki, és persze az oszlopok "ereszkednek". Most képzeljük el mindezt, mint egy sordiagramot: nézzük meg, hogy milyen hosszú sor lóg ki az &tex;\displaystyle y&xet;-tengely &tex;\displaystyle k&xet;-adik egységszakaszán. Ez a sor éppen addig tart, amíg az &tex;\displaystyle a&xet;-adik oszlop magassága legalább &tex;\displaystyle k&xet;, avagy amíg

&tex;\displaystyle \left[\frac{x}{a^{1/t}}\right]\ge k,&xet;

&tex;\displaystyle \frac{x}{a^{1/t}}\ge k,&xet;

&tex;\displaystyle \frac{x^t}{k^t}\ge a,&xet;

&tex;\displaystyle \left[\frac{x^t}{k^t}\right]\ge a.&xet;

Más szóval, az (alulról) &tex;\displaystyle k&xet;-adik sor hossza éppen &tex;\displaystyle \left[\frac{x^t}{k^t}\right]&xet;, és ezzel kaptuk, hogy a bal oldali összeg is a diagram területét adja ki.

Előzmény: [3930] w, 2014-09-09 19:55:20
[3930] w2014-09-09 19:55:20

Az általánosításban szükségszerű pozitív egészekre szorítkozni? Igaz-e, hogy ha &tex;\displaystyle x,t>0&xet;, akkor

&tex;\displaystyle \sum_{k=1}^\infty \bigg[\frac{x^t}{k^t}\bigg]=\sum_{k=1}^\infty \bigg[\frac x{k^{1/t}}\bigg].&xet;

Előzmény: [3929] nadorp, 2014-09-09 10:23:38
[3929] nadorp2014-09-09 10:23:38

Ha &tex;\displaystyle 1\leq k\leq n^2&xet; egész és &tex;\displaystyle \left[\frac{n}{\sqrt{k}}\right]=a&xet;, akkor nyilván &tex;\displaystyle 1\leq a\leq n&xet; ,továbbá

&tex;\displaystyle \frac{n^2}{(a+1)^2}<k\leq\frac{n^2}{a^2} &xet;(1)

Legyen &tex;\displaystyle I_a=\bigg(\frac{n^2}{(a+1)^2};\frac{n^2}{a^2}\bigg]&xet; balról nyílt, jobbról zárt intervallum (&tex;\displaystyle 1\leq a\leq n&xet; egész). Ekkor az &tex;\displaystyle I_a&xet; intervallumok diszjunktak, uniójuk tartalmazza az összes egészt 1 és n között, mégpedig mindegyik &tex;\displaystyle I_a&xet; pontosan &tex;\displaystyle \left[\frac{n^2}{a^2}\right]-\left[\frac{n^2}{(a+1)^2}\right]&xet; egészt tartalmaz. Mivel &tex;\displaystyle k\in I_a&xet; pontosan akkor teljesül, ha &tex;\displaystyle \left[\frac{n}{\sqrt{k}}\right]=a&xet;, ezért

&tex;\displaystyle \sum_{k=1}^{n^2}\left[\frac{n}{\sqrt{k}}\right]=\sum_{a=1}^{n}\sum_{k\in I_a}\left[\frac{n}{\sqrt{k}}\right]=\sum_{a=1}^{n}a\left(\left[\frac{n^2}{a^2}\right]-\left[\frac{n^2}{(a+1)^2}\right]\right)=\sum_{a=1}^{n}\left[\frac{n^2}{a^2}\right]&xet;

Általánosítás:

Tetszőleges n,m pozitív egészre

&tex;\displaystyle \sum_{k=1}^{n^m}\left[\frac{n}{\root{m}\of{k}}\right]=\sum_{k=1}^{n}\left[\frac{n^m}{k^m}\right]&xet;

Előzmény: [3928] w, 2014-09-03 16:17:04
[3928] w2014-09-03 16:17:04

Jelölje &tex;\displaystyle [x]&xet; az &tex;\displaystyle x&xet; egészrészét. Bizonyítsuk be, hogy

&tex;\displaystyle \left[\frac{n^2}{1^2}\right]+\left[\frac{n^2}{2^2}\right]+\dots+\left[\frac{n^2}{n^2}\right]=\left[\frac{n}{\sqrt{1}}\right]+\left[\frac{n}{\sqrt{2}}\right]+\dots+\left[\frac{n}{\sqrt{n^2-1}}\right]+\left[\frac{n}{\sqrt{n^2}}\right].&xet;

Keressünk általánosítást is.

[3927] Loiscenter2014-08-13 10:37:02

Nagyon köszönöm szépen Lóczi Lajos ellenpéldát.(elnézés a elözö irás Névhibáért)

Hozá kell még pontositanom hogy k, n pozitiv egész!

Előzmény: [3926] Loiscenter, 2014-08-13 10:10:59
[3926] Loiscenter2014-08-13 10:10:59

Nagyon köszönöm szépen Loci Láo ellenpéldát.

Hozá kell még pontositanom hogy k pozitiv egész!

Előzmény: [3925] Lóczi Lajos, 2014-08-12 22:42:02
[3925] Lóczi Lajos2014-08-12 22:42:02

Nem. Pl. &tex;\displaystyle n=2&xet;, &tex;\displaystyle x_1=1/2&xet;, &tex;\displaystyle x_2=3/2&xet; és &tex;\displaystyle k=-2&xet; ellenpélda.

Előzmény: [3924] Loiscenter, 2014-08-12 18:31:27

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]