Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[4005] Sirpi2016-07-06 22:40:50

Köszi! Valóban ott volt a 12. feladat.

Előzmény: [4004] Róbert Gida, 2016-07-06 21:54:04
[4004] Róbert Gida2016-07-06 21:54:04

Kömal A/N feladat lehetett ez, úgy emlékszem &tex;\displaystyle n=2^k&xet; esetén nem lehetséges az eredeti számokat meghatározni. De az biztos, hogy Lovász Kombinatorikai problémák és feladatok könyvében ez a feladat benne van. (Rekonstrukciós problémáknál lehet).

Előzmény: [4003] Sirpi, 2016-07-06 20:15:57
[4003] Sirpi2016-07-06 20:15:57

András gondol &tex;\displaystyle n&xet; darab számra, majd megadja Bélának az ezekből a számokból alkotott párok összegét, &tex;\displaystyle \binom{n}2&xet; darabot (csak magukat a számokat, eltitkolva, hogy mely két eredeti szám összegeként állnak elő).

Minden &tex;\displaystyle n&xet; esetén végig lehet gondolni, hogy a megadott összegekből minden esetben rekonstruálhatóak-e az eredeti számok.

Ha &tex;\displaystyle n < 3&xet;, akkor nyilván nem. &tex;\displaystyle n=3&xet; könnyen rekonstruálható, pl. ha A, B és C a három összeg, akkor ebből &tex;\displaystyle (A+B-C)/2&xet;, &tex;\displaystyle (A-B+C)/2&xet; és &tex;\displaystyle (-A+B+C)/2&xet; az eredeti 3 szám.

Jelenleg &tex;\displaystyle n=6&xet;-ig néztem végig az eseteket, ebből a 6 volt a legizgalmasabb. Szóval &tex;\displaystyle n=4, 5, 6&xet;-ra kérdés, hogy mindig egyértelmű-e a visszafejtés, valamint az is, hogy &tex;\displaystyle n>6&xet; esetén tudunk-e valamit mondani (erre még nem tudom a választ, csak sejtem).

[4002] Fálesz Mihály2016-04-20 09:52:13

A Baranyai-tétel speciális esete, hogy egy &tex;\displaystyle (3k+3)&xet;-elemű halmaz &tex;\displaystyle (k+1)&xet;-elemű részhalmazait hármasával lehet csoportosítani úgy, hogy minden hármas diszjunkt halmazokból álljon, amelyek uniója persze kiadja a teljes halmazt.

Ha a &tex;\displaystyle (3k+2)&xet;-elemű halmazunkhoz hozzáveszünk még egy, "extra" elemet, akkor a Baranyai-tétel felbontja a kibővített halmazt hármasokra. Minden hármasban az egyik halmaz tartalmazza az extra elemet és még &tex;\displaystyle k&xet; elemet, ehhez a &tex;\displaystyle k&xet; elemhez rendelhetjük hozzá a másik két &tex;\displaystyle (k+1)&xet;-es részhalmazt.

Egy kerek megoldáshoz a csoportosításra lenne jó egy szép, közvetlen konstrukciót mutatni. Talán ez segíthet.

Előzmény: [4001] 7cs, 2016-04-18 20:01:02
[4001] 7cs2016-04-18 20:01:02

Megpróbálom most már értelmesen leírni, amit akartam, mert az előző hozzászólásom teljesen értelmetlenre sikerült :-(

Az a sejtésem, hogy a 3k+2 elemű halmaz k és k+1 elemű részhalazai olyan hármasokba rendezhetők, ahol egy-egy hármasba két k+1 elemű és egy k elemű részhalmaz tartozik, melyek páronként diszjunktak és uniójuk épp az alaphalmaz. pl. k = 1 re egy ilyen csoportosítás: (12, 34, 5), (13, 25, 4), (14, 35, 2), (15, 24, 3), (23, 45, 1)

És az a kérdésem, hogy egy 2n elemű halmaz össze nem üres részhalmaza hármsokba csoportosítható-e olyan módon, hogy bármely hármason belül valamely két halmaz diszjunkt és uniója épp a hármas harmadik halmaza. pl. n=1-re a triviális (1,2,12) vagy n=2-re (1,23,123) (2,14,124) (3,24,234) (4,13,134) (12,34, 1234) egy jó csoportosítás. Mi a helyzet általánosan?

Előzmény: [4000] 7cs, 2016-02-18 16:10:50
[4000] 7cs2016-02-18 16:10:50

Sziasztok, új vagyok ezen a néven, de másik nick-kel is rég jártam erre...

Az általad kért konstruktív megoldásra nincs ötletem, de szerintem létezik olyan összerendelés, melyben a részhalmasz-hármasok minden esetben páronként diszjunkt halmazokból állnak.

Egy hasonló, de egyszerűbb "feladvány": az N=1, 2, ...2n halmaz nem üres részhalmazainak száma , osztható 3-mal. Lehet-e ezeket a részhalmazokat hármas csoportokba rendezni úgy, hogy egy csoporton belül páronként diszjunkt halmazok vannak, melyek uniója N? pl. n=1-re a triviális ({1},{2},{1,2}) vagy n=2-re ({1},{2,3},{1,2,3}) ({2},{1,4},{1,2,4}) ({3},{2,4},{2,3,4}) ({4},{1,3},{1,3,4}) ({1,2},{3,4},{1,2,3,4}) egy jó csoportosítás. Mi a helyzet általánosan?

Előzmény: [3992] klevente, 2015-12-02 09:18:51
[3999] marcius82016-01-11 10:38:36

Igen, azóta már én is megértettem a kérdésed lényegét. Olyan hozzárendelést nem találtam, amelyből azonnal kiderül, hogy egy "3k+2" elemű halmaznak kétszer annyi "k+1" elemű részhalmaza van mint ahány "k" elemű.

Előzmény: [3998] klevente, 2016-01-08 15:40:05
[3998] klevente2016-01-08 15:40:05

Nem ilyenre gondoltam, hanem "ügyesre" abban az értelemben, hogy ha adott egy k elemű részhalmaz az elemeivel, akkor ahhoz azonnal meg lehet mondani a két hozzárendelt k+1 elemű részhalmazt az elemeikkel.

Előzmény: [3997] marcius8, 2016-01-04 10:58:37
[3997] marcius82016-01-04 10:58:37

Egy lehetséges célirányos megfeleltetés a részemről a következő:

Először lexikografikusan rendezem a "k" elemű részhalmazokat. Utána lexikografikusan rendezem a "k+1" elemű részhalmazokat.

a.) Ekkor a megfeleltetés legyen az hogy, a "k+1" elemű részhalmazok sorozatának elölről és hátulról számítva az "n"-ik tagjához hozzárendelem a "k" elemű részhalmazok sorozatának "n"-ik tagját.

b.) Ekkor a megfeleltetés legyen az hogy, a "k+1" elemű részhalmazok sorozatának elölről számítva az "2n-1"-ik tagjához és "2n"-ik tagjához hozzárendelem a "k" elemű részhalmazok sorozatának "n"-ik tagját.

Előzmény: [3992] klevente, 2015-12-02 09:18:51
[3996] jonas2015-12-23 21:42:38

Ha senki nem adhat önmagának vagy a házaspárjának ajándékot, akkor természetesen rosszabb a helyzet, mert több megkötés van. Ilyenkor 0.13 körül van az esélye, hogy sikerül a sorsolás.

Előzmény: [3995] marcius8, 2015-12-23 20:59:47
[3995] marcius82015-12-23 20:59:47

Ismert, hogy egy közösség tagjai karácsony előtt egymásközt sorsolással döntik el, hogy ki kinek ad ajándékot. A sorsolás úgy történik, hogy mindenki felírja a nevét egy cetlire, ezután mindenki a cetlit beleteszi egy kalapba, majd ezután mindenki húz egy cetlit ebből a kalapból "csukott szemmel". Így mindenki annak ad ajándékot, akinek a nevét húzta. A sorsolás akkor jó, ha mindenki másnak a nevét húzza. Ismert, hogy ekkor a jó sorsolás valószínűsége tart "1/e"-hez, ha a közösség tagjainak száma tart a végtelenhez.

Most tegyük fel, hogy egy közösség "k" darab házaspárból áll, és megint sorsolással döntik el, hogy ki kinek ad ajándékot. (Minden házaspár mindkét tagja külön-külön részt vesz a sorsolásban.) A sorsolás akkor jó, ha nincs olyan résztvevője a sorsolásnak, aki vagy a saját nevét húzza, vagy pedig a házaspárja nevét húzza. Mennyi a jó sorsolás valószínűsége, ha "k" tart a végtelenhez?

Most tegyük fel, hogy egy közösségnek "n" darab tagja van, és a közösség tagjai megint sorsolással döntik el, hogy ki kinek ad ajándékot. Mennyi annak a valószínűsége, hogy van két olyan tagja a közösségnek, akik egymást ajándékozzák meg? (Most ezutóbbit én is átéltem, ugyanis az iskolában is megtartottuk ezt a sorsolást, és én voltam a tagja annak az egyetlen párosnak, akik egymást ajándékozták meg.)

[3994] w2015-12-21 22:17:46

Legyen &tex;\displaystyle f:N\to N&xet; függvény, ahol &tex;\displaystyle N&xet; a pozitív egészek halmazát jelöli. Tegyük fel, hogy az &tex;\displaystyle f(1),f(2),\dots&xet; sorozatnak nincs közös prímosztója, és hogy elég nagy &tex;\displaystyle n&xet;-re &tex;\displaystyle f(n)\neq 1&xet;. Határozzuk meg &tex;\displaystyle f&xet;-et, ha azt is tudjuk, hogy elég nagy &tex;\displaystyle n&xet; esetén

&tex;\displaystyle f(a)^n | f(a+b)^{a^{n-1}}-f(b)^{a^{n-1}}&xet;(*)

teljesül minden &tex;\displaystyle a,b\in N&xet;-re!

[3993] HoA2015-12-03 22:10:19

Én nem kereskedem a tőzsdén. Így aztán fogalmam sincs róla, mit jelent a "10 pont stop", "kört nyerni" , "pozíció nyílik" stb. Ezért azt hiszem, a te feladatod megoldásához is segít egy másik feladat: Középiskolai matematikai ismereteket - és csak azt - feltételezve fogalmazd meg a problémádat közérthető nyelvre lefordítva.

Előzmény: [3991] shooter, 2015-11-23 17:28:18
[3992] klevente2015-12-02 09:18:51

Könnyű belátni, hogy egy 3k+2 elemű halmaznak kétszer annyi k+1 elemű részhalmaza van, mint k elemű (k természetes szám). Vajon megadható-e "ügyesen" valamilyen kölcsönösen egyértelmű hozzárendelés a k elemű részhalmazok és a k+1 elemű részhalmazokból alkalmasan képzett (diszjunkt) részhalmaz-párok között?

[3991] shooter2015-11-23 17:28:18

Sziasztok! Egy kis segítséget szeretnék kérni tőletek, mert nekem nehéznek és átláthatatlannak tűnik a dolog.

Egy példát szeretnék megoldatni, és nem szeretnék órákat gondolkozni rajt.

Tehát: Tőzsdén kereskedünk. 10 pont stopot használunk. Egymás után átlagosan 10 kört nyerünk. Egy körnek számít az is, ha 1 pozíció nyílik meg, és az is, ha mindhárom megnyílik.

Egy pozíció nyitáskor 1 pontot nyerhetünk. Ha megnyitjuk a második pozíciót (az első még nyitva van!), azon is 10 pontot veszthetünk. Harmadiknál is 10 pontot veszíthetünk.

Véletlenszerű, hogy megnyílik-e a második pozíció, de ha ez megnyílik, akkor többnyire a harmadik is, hacsak nem nyerjük meg a szükséges tőkét az első kettővel.

Mekkora legyen a pozíciók egymáshoz viszonyított méretaránya, hogy mégis nyerjünk? Mekkora legyen a második pozícióval vett nyereség, ha csak kettő nyílik meg, illetve mekkora legyen a minimális nyereség, ha mindhárom megnyílik? Nyerőben szeretnénk kiszállni, ez a lényeg. Egy pozíció megnyitása sok esetben nem elég, ezért kell a többi is. Kérem a segítségeteket! Köszönöm. Krisz

[3990] csábos2015-11-16 23:20:02

Vegyük észre, hogy az adott egyenesek kielégítik az

&tex;\displaystyle (x-1)(y-1)(z-1)-xyz=0&xet;

egyenletet. Ekkor &tex;\displaystyle x=y=-6z&xet; helyettesítéssel a

&tex;\displaystyle 24z^2+11z+1=0 &xet;

egyenlet adódik, melynek gyökei &tex;\displaystyle z=-\frac{1}{3}&xet; és &tex;\displaystyle z=-\frac{1}{8}&xet;

1. eset: &tex;\displaystyle z=-\frac{1}{3}&xet;. Ekkor a &tex;\displaystyle (2,2,\frac{-1}{3})&xet; ponton is átmegy az egyenes. Ha átfektetünk e ponton és pl. az &tex;\displaystyle x=z-1=0&xet; egyenesen egy síkot, akkor ez 1-1 pontban metszi a másik két egyenest. Ha ezek ,,véletlenül'' egy egyenesen vannak, akkor nyertünk. És nyertünk. A pontok:

&tex;\displaystyle (0,-2,1)&xet;,&tex;\displaystyle (1,0,\frac{1}{3})&xet;,&tex;\displaystyle (\frac{3}{2},1,0)&xet; és persze &tex;\displaystyle (2,2,-\frac{1}{3})&xet;. Ezek egy egyenesen vannak.

2. eset: &tex;\displaystyle z=-\frac{1}{8}&xet;. Ekkor a &tex;\displaystyle (\frac{3}{4},\frac{3}{4},-\frac{1}{8})&xet; pontbl fektetjük a síkot és a másik 3 pont: &tex;\displaystyle (0,3,1 )&xet;, &tex;\displaystyle (1,0, -\frac{1}{2}) )&xet; és &tex;\displaystyle (\frac{2}{3}),1,0 )&xet;

Előzmény: [3969] Lóczi Lajos, 2015-09-17 19:31:04
[3989] Loiscenter2015-11-11 16:43:17

Köszönöm szépen! szép a megoldás!

Előzmény: [3988] csábos, 2015-11-08 19:34:54
[3988] csábos2015-11-08 19:34:54

Ha van 1, akkor van 1+1, és akkor van minden természetes szám. Vegyük az

&tex;\displaystyle \frac{1}{\frac{1}{a}-\frac{1}{a+c}}=\frac{a^2}{c}+a&xet;

összefüggést. Ebből &tex;\displaystyle a&xet;-t kivonva &tex;\displaystyle c=1&xet; választással adódik &tex;\displaystyle a^2&xet;. Ha &tex;\displaystyle a=-1&xet;, akkor &tex;\displaystyle c=2&xet;-vel adódik &tex;\displaystyle \frac{a^2}{2}&xet;, amit önmagával összeadva adódik &tex;\displaystyle a^2&xet;.

Ezután a

&tex;\displaystyle \frac{b}{2}=\frac{1}{\frac{1}{b}+\frac{1}{b}}&xet;

trükkel csak a

&tex;\displaystyle 2ab=(a+b)^2-a^2-b^2&xet;

kifejezést kell felezni.

Előzmény: [3987] Loiscenter, 2015-11-08 08:23:17
[3987] Loiscenter2015-11-08 08:23:17

Modositananak a feladaton:

1 tartozik a szamhalazunkhoz. Csak kulönbséget (-) es recsiprok-at venni. Bizonyitando Összeadást, szorzást lehet elvégezni!

( Köszi Csábosnak hozászlásodért - de ez a néhány gomb 'sok' lenne?)

Előzmény: [3986] csábos, 2015-11-07 20:29:12
[3986] csábos2015-11-07 20:29:12

Arany Dániel 1980 3. kat 2. forduló 10. osztály 1. feladat.

Szerintem a számológépen van még néhány gomb, pl. a számjegyek.

Előzmény: [3985] Loiscenter, 2015-11-06 23:30:09
[3985] Loiscenter2015-11-06 23:30:09

Hajnal Péter : Elemi Kombinatorikai feladatok ( Polygon)

18.2 Feladat: Kis számológépünkön csupán összeadás és kivonás van, de egy szám reciprokát is képezhetjük. Kiszámolhatjuk - e vele két szám szorzatát?

PROBLÉMA: könyvben szereplö megoldás nem teljes, mert kész tényként tekintette hogy (a+1) létezik , holott nem mutatja hogy 1 van benne - igy a+1 nem bizonyitott hogy van benne S halmazban.

Segitsetek tisztázni ezt a problémat! Köszönöm!

[3984] csábos2015-10-22 13:11:04

Az összes ilyen tulajdonságú 4-edfokú polinom körülbelül:&tex;\displaystyle (x^2+1)(ax^2+bx+1)&xet; alakú, ahol &tex;\displaystyle 0< a<1&xet; és &tex;\displaystyle b^2-4a<0&xet;. A körülbelül az azt jelenti, hogy konstanssal lehet szorozni és &tex;\displaystyle x&xet; helyébe &tex;\displaystyle cx&xet;-et írni.

Előzmény: [3983] Lóczi Lajos, 2015-10-18 10:23:59
[3983] Lóczi Lajos2015-10-18 10:23:59

Szép példa! (Ráadásul eggyel kisebb a fokszáma, mint annak a példának, melyet egy 1999-es cikkben találtam korábban.)

A példádban az is szép, hogy az &tex;\displaystyle \epsilon_0=510663/50000000&xet; konstans egy egyszerű racionális szám:

az &tex;\displaystyle \epsilon x^5+\frac{31 x^4}{1000}+\frac{17 x^3}{50}+\frac{1031 x^2}{1000}+\frac{17 x}{50}+1&xet; polinom minden gyökének valós része negatív, ha &tex;\displaystyle 0<\epsilon<\epsilon_0&xet;, ám &tex;\displaystyle \epsilon=0&xet; vagy &tex;\displaystyle \epsilon=\epsilon_0&xet; esetén már fellépnek tiszta képzetes gyökök.

Előzmény: [3981] csábos, 2015-10-17 23:43:55
[3981] csábos2015-10-17 23:43:55

Nem.

&tex;\displaystyle 0.031 x^4+0.34 x^3+1.031 x^2+0.34 x+1&xet;

szerintem ellenpélda. Ennek gyöke az &tex;\displaystyle i&xet;. Fordítva gondolkoztam. Vegyük azt a polinomot, aminek gyökei az eredeti polinomunk gyökeinek a reciprokai, megszoroztam x-szel, majd hozzáadtam epszilont.

Megkérdeztem egy pár embertől, és ennek a polinomnak a fordítottjára jutottunk jutottunk. A feltételeket

http://lib.physcon.ru/doc?id=7b389ac0fb8f

innen ellenőriztük, a wikipédián

https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion

itt van.

Előzmény: [3980] Lóczi Lajos, 2015-10-13 00:38:49
[3980] Lóczi Lajos2015-10-13 00:38:49

Rögzítsünk egy &tex;\displaystyle n\ge 2&xet; egészt, egy pontosan &tex;\displaystyle (n-1)&xet;-edfokú egyváltozós valós &tex;\displaystyle p&xet; polinomot, és egy &tex;\displaystyle \epsilon_0>0&xet; számot.

Tudjuk, hogy minden &tex;\displaystyle 0<\epsilon\le \epsilon_0&xet; mellett az &tex;\displaystyle \epsilon x^n + p(x)&xet; polinom minden gyökének valós része negatív. Igaz-e, hogy az (&tex;\displaystyle \epsilon&xet;-tól független) &tex;\displaystyle p&xet; polinom minden gyökének valós része is negatív?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]