Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[487] nadorp2004-09-16 08:09:37

Az eredmény nem teljesen igaz, ennél több is teljesül.

Legyen (m,n)=d. Ekkor (an-1,am-1)=ad-1

Előzmény: [486] Hajba Károly, 2004-09-15 23:34:26
[486] Hajba Károly2004-09-15 23:34:26

Kedves Sirpi!

Tipp a 100. feladathoz:

Erős gyanúm, hogy általában LNKO=a-1. Legyen m>n. N=an-1+an-2+...+1 és M=am-1+am-2+...+an. Így

an-1=(a-1)N és am-1=(a-1)(M+N).

Az \frac{M+N}{N} törtnek akkor van egész értéke, ha m n-nek egész számú többszöröse. Ekkor LNKO=an-1, hiszen:

\frac{a^{kn}-1}{a^n-1}=\frac{(a^n)^k-1}{a^n-1}=\frac{(a^n-1)(...)}{a^n-1}

HK

Előzmény: [485] Sirpi, 2004-09-15 13:23:37
[485] Sirpi2004-09-15 13:23:37

100. feladat: Mennyi a legnagyobb közös osztója az an-1 és az am-1 számoknak, ha n és m természetes számok, a pedig pozitív egész? (A feladat saját ötlet, nem nehéz, de bevallom, először meglepődtem a végeredményen.)

[484] V. Dávid2004-09-14 22:54:04

http://www.infinity.tag.hu/ :-))))))))))))))))))))))))))))))))))))))))

[483] Hajba Károly2004-09-14 15:25:15

Kedves Dávid és Topik!

Kicsit visszatérnék a 98. feladat témájához. Erich Friedman a honlapján bemutatja, hogyan lehet az L-idomba n db egybevágó idomot beilleszteni úgy, hogy az a lehető legjobban kitöltse az L-idomot. Ezek az ezidáig talált legjobb megoldások?

HK

Előzmény: [474] V. Dávid, 2004-09-04 13:06:15
[482] jenei.attila2004-09-14 13:21:11

Közben megtaláltam a feladatot, és pontosan erről van szó. Kezdetben valóban páratlan sok kavicsot tartalmaz a kupac. Továbbra is érdekelne, hogy honnan származik ez a feladat, és aki nem ismerte, annak sok sikert a megoldáshoz (bár egy kicsit segítettem azzal, hogy elárultam kinek mikor van nyerő stratégiája).

Előzmény: [481] jenei.attila, 2004-09-14 12:41:21
[481] jenei.attila2004-09-14 12:41:21

Sziasztok!

Egy kis segítségre lenne szükségem. Úgy két két és fél éve megoldottam egy feladatot, amelyből csak egy kis darab papírt találtam meg. Sajnos ennyiből nem jöttem rá mi is volt a feladat, de valami olyasmi hogy egy kupac kavicsból két játékos felváltva vesz el 1 2 vagy 3 kavicsot, és végén az nyer, akinél páros sok kavics lesz. Lehet hogy kiindulásnál páratlan sok kavics volt, erre már nem emlékszek. Sajnos a feladatot sehol nem találom, de a megoldás talán az volt, hogy a kezdőnek van nyerő stratégiája, ha kezdetben nem 8k+1 számú kavics volt a kupacban. Ellenkező esetben a második játékos tud nyerni. Szóval a feladat kellene pontosan.

[479] lorantfy2004-09-06 20:03:44

Az EUKLIDES szerkesztőprogram 2.02-es változata ingyenesen letölthető a www.euklides.hu lapról. Szuper jó kis program, én nagyon kedvelem!

Előzmény: [478] Hajba Károly, 2004-09-06 09:53:57
[478] Hajba Károly2004-09-06 09:53:57

A munkaeszközömmel, egy CAD programmal. De László gyakorlott Euklidész alkalmazó, az olcsón beszerezhető és van ingyenes változata is.

Előzmény: [477] V. Dávid, 2004-09-06 09:12:17
[477] V. Dávid2004-09-06 09:12:17

Mivel csinálsz ilyen jó ábrát?

Előzmény: [476] Hajba Károly, 2004-09-05 15:24:57
[476] Hajba Károly2004-09-05 15:24:57

Egy kis rajzos segítség a 99. feladathoz :o)

Előzmény: [475] V. Dávid, 2004-09-04 13:13:38
[475] V. Dávid2004-09-04 13:13:38

99. Feladat: Az y=\sqrt{1-x^2} félkörlemez súlypontja (0;\frac4{3\pi}). Hol van az x=\frac{\sqrt2}2 és az x=1 egyenesek által határolt darabjának a súlypontja? Oldd meg a feladatot az analízis alkalmazása nélkül.

[474] V. Dávid2004-09-04 13:06:15

A húgom azt mondta, hogy a NASA állást ajánlott annak, aki ezt a feladatot 10 percen belül megoldja. Szóval azért, mert eddig még senki sem oldotta meg.

Előzmény: [473] Hajba Károly, 2004-09-04 11:06:02
[473] Hajba Károly2004-09-04 11:06:02

Kedves Dávid!

Szerintem nincs egyértelmű megoldása ezidáig a 98. feladatnak. Nézd meg ezt.

Üdv: HK

Előzmény: [471] V. Dávid, 2004-09-04 09:40:11
[472] Hajba Károly2004-09-04 10:25:06

Kedves Dávid!

Még nem volt ilyen példa. S mivel a diszkrét matematika "csempézős" (alias pakománia) feladatkörében igen nehéz a bizonyítás vagy cáfolat, így feltehetően létezik megoldás. (Agyam felizzott :o)

HK

Előzmény: [471] V. Dávid, 2004-09-04 09:40:11
[471] V. Dávid2004-09-04 09:40:11

98. Feladat (Remélem, ez még nem volt) Három, egységnyi oldalú négyzetet L-alakban egymáshoz illesztünk (vagy egy 2 oldalú négyzetből levágunk egy 1 oldalút) Fel lehet-e darabolni ezt öt egybevágó részre?

[470] Lóczi Lajos2004-09-03 22:08:03

Kedves Dávid,

ha jól értem, a 97. feladatot lényegében már tárgyaltuk a "Felmerülő kérdések és problémák topikja" rovatban, kb. a 20-40-es hozzászólások környékén.

Előzmény: [465] V. Dávid, 2004-09-03 10:13:45
[469] Lóczi Lajos2004-09-03 22:00:11

Kedves Dávid,

a "selytésed" :) helyes. Páratlan n-re a sokdimenziós gömbök térfogatának és felszínének elemzése megtalálható a http://mathworld.wolfram.com/Hypersphere.html címen.

Előzmény: [468] V. Dávid, 2004-09-03 21:34:13
[468] V. Dávid2004-09-03 21:34:13

A 95. általánosítása: Vegyünk három helyett n darab számot. A keresett P(n) valószínűség az egységsugarú n-dimenziós gömb G(n) és a két egység oldalú n-dimenziós kocka K(n) térfogatának aránya. Nyilván K(n)=2n, de mi a helyzet G(n)-nel?

Nézzük meg, hogyan is számoltuk ki a gömb térfogatát. Adott az origó középpontú, r sugarú k kör. Most x szerint integráljuk azoknak a köröknek a területét, amelyek sugara egyenlő k x-hez tartozó y koordinátájával. 4 dimenzióra analogikusan gondolkodunk: Adott az előző k kör. Most x szerint integráljuk azoknak a gömböknek a térfogatát, amelyek sugara k x-hez tartozó y koordinátája, azaz

G(4)=\int_{-r}^r\frac{4\pi}3\left(\sqrt{r^2-x^2}\right)^3dx=\frac{\pi^2}2r^4

Hasonlóan G(5)=\frac{8\pi^2}{15}r^5. Kipróbáltam az első néhány n-re, és az a sejtésem alakult ki, hogy

G(2k)=\frac{\pi^k}{k!}r^{2k}

De semmilyen selytésem nem alakult ki páratlan n-re.

Előzmény: [466] lorantfy, 2004-09-03 12:05:45
[467] Káli gúla2004-09-03 12:33:30

Kedves Károly!

A kettes találathoz nem kell minden párt eltalálni. Például, minden nyerő ötösben van két szám, ami néggyel osztva azonos maradékot ad, így elég az ilyen párokat eltalálni. Leírok egy rendszert, amivel 30 szelvényen mindig lesz 2 találatunk, feltéve, hogy a nyerő ötösben van két 4-gyel osztható szám. Ezt a 30 szelvényt 0-val, 1-gyel, 2-vel és 3-mal eltolva kaphatunk 120 szelvényt, ami garantál 2 találatot. Ez nem optimális, de nincs nagyon messze attól. A pontos szám 100 körül lehet, ahogy írtad.

Az egyszerűség kedvéért 100-ig nézzük a számokat, a 25 néggyel osztható számból alkotható összes párt, másképp mondva a 25 csúcsú teljes gráf éleit akarjuk 30 ötössel lefedni. A 25 számot 5 ötös csoportba osztjuk: (0,4,8,12,16), (20,24,28,32,36), ..., (80,84,88,92,96). Először is a "belső élekhez" ezt az 5 ötöst megjátszuk 1-1 szelvényen.

Ezután, mivel két ötös csoport "között" 25 él lehetséges, a "köztes" élek lefedéséhez azt kell csak megoldani, hogy azok mind előforduljanak valamelyik szelvényünkön. Indexeljünk egy-egy ötös csoporton belül 0, 1, ..., 4 - gyel, és készítsünk egy olyan táblázatot, ahol bármely két oszlopot végignézve (az oszlopok az ötös csoportoknak felelnek meg), minden lehetséges párt megtalálhatunk. Ilyen táblázat 25 sorát az

(i,j,i+j,2i+j,3i+j),  (i,j=0,..,4)

ötösökkel lehet elkészíteni, ezt mutatja az ábra bal oldali része, a jobb oldali részen pedig a nekik megfelelő 25 lottószelvény található (a nem létező lottószámokat tetszőleges másik számmal kell helyettesíteni).

Előzmény: [455] Hajba Károly, 2004-09-01 15:46:40
[466] lorantfy2004-09-03 12:05:45

Hello Fiúk!

Ez tényleg sokat segít. Ha a kiválasztott három számot térbeli koordinátákként fogjuk fel, akkor az összes lehetséges pont egy 2 egység oldalú kockát ad. A négyzetösszegük a pont origótól vett távolságának négyzete. Így a jó pontok egy egység sogarú körben vannak. A térfogatok aránya adja a keresett valószínüséget. Majd otthonról felteszek egy 3D-s ábrát hozzá.

Előzmény: [463] Sirpi, 2004-09-02 22:48:28
[465] V. Dávid2004-09-03 10:13:45

97. Feladat: Hozzunk létre olyan sík-koordináta-rendszert, amelyben a sík minden pontjának egyetlen koordinátája van.

[464] V. Dávid2004-09-03 10:07:10

Aki nem jön rá a trükkjére, és algebrai módszerekkel akarja megoldani, az reménytelennek találja a feladatot. Egyszer fealdtam egy nagyon jó matekos srácnak, aki emiatt nem tudta megoldani.

Előzmény: [463] Sirpi, 2004-09-02 22:48:28
[463] Sirpi2004-09-02 22:48:28

96.-ra a megoldás: \frac 1{2^3}\cdot \frac 43 1^3 \pi=\frac{\pi}6. Ennél jobban nem akarnám lelőni.

Előzmény: [462] V. Dávid, 2004-09-02 20:47:19
[462] V. Dávid2004-09-02 20:47:19

96. Feladat: a [-1;1] intervallumból véletlenszerűen kiválasztunk három valós számot. Mekkora annak a valószínűsége, hogy ezek négyzetösszege legfeljebb 1?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]