Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[1110] Maga Péter2010-04-11 16:01:03

Vagy mondhatjuk azt, hogy nem a zn-1=(z-e0).....(z-en-1), hanem a zn-1+...+z+1=(z-e1).....(z-en-1) azonosságba helyettesítünk z=1-et. Ezzel nem használunk folytonosságot.

Előzmény: [1108] nadorp, 2010-04-07 11:08:02
[1109] Marika2010-04-11 15:44:20

Sziasztok ! Valaki segítene megoldani?

Egy háromszög oldalfelező pontjai (-2;-2),(5;1),(3;4) a, Számítsuk ki a háromszög csúcsainak koordinátáit. b,Számítsuk ki az eredeti és a z oldalfelező pontok által meghatározott háromszögek súlypontjainak koordinátáit. Mit tapasztalunk?

És még egy lenne

Az ABC háromszög A csúcsának helyvektora a/vektor/(-2;3),AB/vektor/=7i-2jés CB/vektor/=3i-6j Számítsuk ki a háromszög csúcsainak és súlypontjának koordinátáit.

Lécci segítsetek megoldani de ha lehet magyarázattal, hogy utána egyedül is sikerüljön. Előre is köszönöm a segítséget!!!!!!!!!

[1108] nadorp2010-04-07 11:08:02

Annyiban igazad van, hogy hallgatólagosan kihasználtuk, hogy egy polinom minden pontjában folytonos, tehát hogy az f(z)=\frac{z^n-1}{z-1} függvény a z=1 pontban folytonossá tehető, tehát minden z-re f(z)=zn-1+...+z+1. Más szavakkal, z\neq1 esetén f(z)=zn-1+...+z+1, de mivel a jobb oldal mindenhol folytonos, ezért f(1) a jobb oldal z=1 helyettesítési értékével értelmezhető

Előzmény: [1107] HoA, 2010-04-07 08:53:11
[1107] HoA2010-04-07 08:53:11

A Geometria [1404] –ben kitűzött feladat szerepel Reiman István „Geometria és határterületei” és „Fejezetek az elemi geometriából” könyveiben. A megoldás ötlete az, hogy a komplex síkon az n-ik egységgyököket feleltessük meg a szabályos n-szög csúcsainak. Ezek az ei egységgyökök a zn=1 egyenlet megoldásai, a P=zn-1=0 polinom nullhelyei, ahol e0=1. Ezért a polinom felírható P=(z–1)(z–e1)...(z–en-1) alakban. Ugyanakkor zn-1=(z–1)(zn-1+zn-2+...+z+1) Mindkét kifejezést z-1 tényezővel osztva az adódó kifejezések z=1 helyen vett abszolútértékére adódik, hogy |(1–e1)|.|(1–e2)|...|(1–en-1)|=1+1+..+1=n és itt a baloldal éppen a z=1 csúcsból a többi csúcsba húzott átlók hosszának szorzata.

A kérdés: „Középiskolában tanultuk”, hogy egy ilyen z-1 -gyel történő egyszerűsítés után a továbbiakban ki kell kötnünk, hogy z\ne1 . Itt pedig a folytatásban éppen a z=1 helyen nézzük a dolgokat. Nem hiányzik itt valami?

[1105] K Robi2010-04-03 21:27:24

Köszönöm a gyors választ! És Lajosnak is.

Előzmény: [1104] sakkmath, 2010-04-03 21:21:18
[1104] sakkmath2010-04-03 21:21:18

Ez a link így nem jön be, de így hívható be még: a Google-ba írd: köbszámok összege.

Kattints a harmadik találatra.

Előzmény: [1106] sakkmath, 2010-04-03 21:16:19
[1106] sakkmath2010-04-03 21:16:19

Klikkelj ide. Itt az is kiderül, hogy a jobb oldalon már te is egyszerűsíthettél volna ... .

Megszerelve (kimaradt a http:// ...) Sirpi

Előzmény: [1102] K Robi, 2010-04-03 19:41:56
[1103] Lóczi Lajos2010-04-03 21:11:48

Teljes indukcióval ki fog jönni. (Erre a kifejezésre keress rá.)

Előzmény: [1102] K Robi, 2010-04-03 19:41:56
[1102] K Robi2010-04-03 19:41:56

\sum_{i=1}^ni^3=\frac{(n+1)^4}{4}-\frac{(n+1)^3}{2}+\frac{(n+1)^2}{4},n természetes szám.

Meg tudná valaki mutatni a bizonyítását? Természetesen egy link is tökéletesen megfelelő olyan helyre, ahol megtalálom (lehetőleg magyar vagy angol vagy német nyelven).

[1101] Maga Péter2010-03-29 08:52:14

A bizonyítás ,,helyből'' valóban nem könnyű. Van azonban egy valós függvénytani elmélet, aminek ez az egyik első alkalmazása. Lényegében azt lehet bebizonyítani, hogy egy valós-valós függvény folytonossági pontjainak halmaza előáll megszámlálható sok nyílt halmaz metszeteként (ez egyszerű következménye a folytonosság definíciójának); a racionális számok halmaza pedig nem (ez pedig következik Baire kategóriatételéből).

Előzmény: [1100] jonas, 2010-03-28 13:30:57

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]