Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[1251] Tóbi2010-07-01 15:27:34

Szerintem itt minden kérdésedre megtalálod a választ.

Előzmény: [1250] Jedy, 2010-07-01 08:46:50
[1250] Jedy2010-07-01 08:46:50

sziasztok!

Merőben új témáról szeretnék kérdezni,hátha valaki nagyobb tudással rendelkezik ezen a téren.Valaki tudja pontosan,hogy kiből is lehet kockázatelemző,és alapjába véve mit is csinál?Bármilyen információt szívesen fogadnék.Köszönöm:)

[1249] Lóczi Lajos2010-06-25 23:26:49

Nem, akkor nem tudunk.

Előzmény: [1248] Fernando, 2010-06-25 18:37:09
[1248] Fernando2010-06-25 18:37:09

Köszönöm!

Másik kérdés: ha a kiválasztási axiómát nem fogadjuk el, akkor is tudunk konstruálni nem L-mérhető halmazt?

Előzmény: [1238] Maga Péter, 2010-06-20 18:09:54
[1247] jonas2010-06-23 12:16:04

Igen, én is zöldségeket írok.

Előzmény: [1246] nadorp, 2010-06-23 08:01:57
[1246] nadorp2010-06-23 08:01:57

Nem Gauss kvadratikus reciprocitás tétel ?

Előzmény: [1243] jonas, 2010-06-22 18:10:40
[1245] S.Ákos2010-06-22 21:32:54

Köszönöm, sikerült (megint) elírnom, amire gondoltam.

Előzmény: [1243] jonas, 2010-06-22 18:10:40
[1244] Róbert Gida2010-06-22 18:38:32

Euler kritérium ellenőrzéséhez nem kell semmilyen prímfelbontást meghatároznod.

Előzmény: [1243] jonas, 2010-06-22 18:10:40
[1243] jonas2010-06-22 18:10:40

Hadd foglaljam röviden össze a helyzetet, mert volt némi keveredés.

Bármilyen p prímre az  x^2 \equiv a \left.\right.(\mod p) kongruencia a számok kb. felére oldható meg (a p-hez nem osztható számoknak pontosan a felére, plusz még a p-vel osztható számokra). Összetett számokra nem ez a helyzet, itt több a számra nem oldható meg a kongruencia, mivel lényegében szétesik több másodfokú kongruenciára minden prímosztóra; hogy hány a-ra van megoldás, az így a p prímfelbontásából könnyen kiszámolható.

A p négyes maradéka abban segít, hogy eldöntsd, konkrétan x2\equiv-1 megoldható-e. Van arra is elmélet, hogyan lehet meghatározni, hogy egy bizonyos a-ra és p-re meg lehet-e oldani a kongruenciát, ehhez „csak” néhány (max (|a|,|p|)-nél kisebb vagy egyenlő) szám prímfelbontását kell tudni kiszámolni. Ebből az is következik, hogy rögzített a-ra és változó p prímekre a megoldhatóság csak p-nek a 4a-s osztási maradékától függ. Ez az Euler-féle kvadratikus reciprocitási tételen alapul, számelmélet kurzuson tanítani szokták, és le van írva a remek Erdős–Surányi-féle Válogatott fejezetek a számelméletből könyvben.

Előzmény: [1242] Róbert Gida, 2010-06-22 13:08:09
[1242] Róbert Gida2010-06-22 13:08:09

Egyre zöldebbeket írtok. Ha például a=1, akkor a kongruencia mindig megoldható, még az sem kell, hogy p prím.

Amúgy a kongruencia pontosan akkor oldható meg, ha a^{\frac {p-1}{2}} \equiv 1 \mod p, illetve, ha a osztható p-vel. (Ez van páratlan p prím esetén, p=2-re mindig van megoldás.) Mellesleg ez az Euler kritérium.

Előzmény: [1241] m2mm, 2010-06-22 10:22:42

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]