Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[1652] Matroz2012-02-12 11:31:06

Szeretnék segítséget kérni,ha lehetséges: 1, Egy L korlátos alakzatnak legalább két szimmetriatengelye van. Igazoljuk, hogy az összes szimmetriatengely egy közös ponton halad keresztül!

2, A L korlátos alakzatnak van \alpha-szögű forgásszimmetriája (0 <\alpha< 180). Igaz-e hogy L tengelyesen szimmetrikus? Igaz-e, hogy L középpontosan szimmetrikus?

Köszönöm szépen!

[1651] Jhony2012-02-11 14:11:36

- előre is bocsi az angolért -- ,ha szükséges --- - az alábbi mennyire lenne,lehetne elfogadható bizonyítása a hiányosságnak azon bizonyos sejtés bizonyításából,az n=a+b+1 egyenlet estére,azon bizonyos a és b számokra ,amik jelen esetben x és y lennének ?

- Be prime numbers p and k as P = (2x +1) and t = (2Y +1), where x and y are integers, - To show that whatever n, greater than or equal to 2, there are numbers x and y as x = (p-1) / 2 and y = (t-1) / 2, so that the equation n = x + y +1 is always true - For n = 2 we have p = 2 and t = 2 so that 2 = (2-1) / 2 + (2-1) / 2 +1 or 2 = 1/2 +1 / 2 +1 ie 2 = 1 + 1 or 2 = 2 - For n = 3 we have p = 3 and t = 3 so that 3 = (3-1) / 2 + (3-1) / 2 +1 or 3 = 1 + 1 +1 ie 3 = 3 - For. n = 4 we have p = 5 and t = 3 so that 4 = (5-1) / 2 + (3-1) / 2 +1 or 4 = 2 + 1 + 1 ie 4 = 4 ... - For. n = k we have k = x + y + 1 ie k = (p-1) / 2 + (t-1) / 2 +1 suppose is always true, so - For. k = k + 1 we have k +1 = ((p-1) / 2 + (t-1) / 2 +1) +1 ie k + 1 = k + 1 so than q.e.d.

köszönöm szépen a választ !

Előzmény: [1650] Jhony, 2012-02-11 12:42:05
[1650] Jhony2012-02-11 12:42:05

- nos ebből a válaszból értsem azt,ha az n=a+b+1 egyenletben az a=(p-1)/2 és b=(k-1)/2 alakú ,ahol p és k prímek, ... és az egyenlettel kapcsolatos állítás miszerint minden 1 nél nagyobb n természetes számra létezik egy a és egy b ,a fennt említett formában,mikre az n=a+b+1 állítás igaz ,nos abban az esetben az előzőleg megírt bizonyításom arra a sejtésre ,netalán,elgogadható is lehetne ?

- várom a választ

Üdvözlettel,Jhony !

Előzmény: [1609] HoA, 2012-01-05 17:19:25
[1649] SmallPotato2012-02-04 18:59:09

Jól értem, hogy a bizonyítás arra menne ki, hogy minden kettőnél nagyobb prím páratlan? Vagy arra, hogy minden páratlan szám 2n+1 alakú? Dehát ezek a prím és a páratlan definíciójából közvetlenül következő dolgok, nem?

Előzmény: [1648] Jhony, 2012-02-04 13:14:44
[1648] Jhony2012-02-04 13:14:44

ok-é köszönöm ! az lenne az állítás,hogy minden kettőnél nagyobb prím felírható 2n+1 formájában ... - a kérdés pedig,hogy ez a levezetés,bizonyítás elégséges e arra,hogy igaz ?

- köszönöm a választ !

Előzmény: [1647] HoA, 2012-02-04 13:02:59
[1647] HoA2012-02-04 13:02:59

Nem tudom, honnan emeled át ezt az angolul is szörnyű szöveget ( "every prim p>2 can be writing" , etc. ) , de ezen túltéve magunkat sem értem, mi az állítás. Ez egy önálló "tétel" , vagy a [1608]-nak akar valami kiegészítése/módosítása lenni?

Ha te úgy véled, megértetted a levezetést, nyugodtan írd le magyarul, úgy talán a többiek is kedvet kapnak belenézni.

Előzmény: [1646] Jhony, 2012-02-04 12:14:51
[1646] Jhony2012-02-04 12:14:51

prove that every prim p>2 can be writing in the form of 2n+1 for n>0 ,n number natural,so p-1=2n --- p-1 --- even,because p is odd.

so p>2 --- than p>=3 p is prim,p>2 so than p is even so p=2k+1,where k=1,2,3,...,n. so p=2k+1 --- subtract 1 from both sides,than p-1=2k 2n=p-1=2k so 2n=2k --- divide both sides by 2 n=k - so for every p prims there are n>=1,n natural , such that p=2n+1

- is this correct,right ?

Előzmény: [1609] HoA, 2012-01-05 17:19:25
[1645] Maga Péter2012-01-26 09:37:20

Szerintem rendben van. A 2-n hosszú diadikus intervallumok éppen az olyan tégláknak felelnek meg, amikor az első n koordinátában előírod valamelyik jegyet, a többi jegyet szabadon engeded, és a kétféle mértékük megegyezik. Ezek generálják a [0,1] szokásos Borel-struktúráját (lehet, hogy a végpontokkal kell egy kicsit maszatolni, ezt nem gondoltam végig, de úgyis csak megszámlálható sokan vannak, úgyhogy biztos minden oké). Úgyhogy a két Borel-mérték ugyanaz. Azon számok, ahol az átlag limesze létezik, nyilván Borel (beszélgetünk róla:P, egyébként valamelyik Borel-osztályba a limesz definíciója is belenyomja).

Előzmény: [1644] jenei.attila, 2012-01-26 09:11:03
[1644] jenei.attila2012-01-26 09:11:03

Így már OK, és valamikor tanultam is én a Carathéodory kiterjesztésről (nagyon rég volt), de a szorzatterekről nem. Fiam tanul most valszámot, ezért került elő ez a probléma. Ahhoz képest, hogy ez egyáltalán nem magától értetődő fogalom, elég lazán odavetik hogy a vv-k számtani közepe erősen konvergál. Persze mivel nem tanult mértékelméletet, nem is tudta ezt értelmezni (szerintem nem volt vele egyedül). Egyébként mi a véleményed a [0,1] intervallum 2-edes törtjeinek jegyeiről? Igaz amit arról írtam?

Előzmény: [1643] Maga Péter, 2012-01-26 08:21:30
[1643] Maga Péter2012-01-26 08:21:30

Carathéodory kiterjesztési tétele (Carathéodory's extension theorem) néven találsz a wikin egy szócikket, talán segít megérteni.

Nagyjából arról van szó, hogy ha van egy előmérték egy bizonyos tulajdonságokat kielégítő halmazon (a téglák halmaza ilyen), akkor az kiterjed mértékként a generált \sigma-algebrára. A szorzattéren a bázis-nyílt halmazok definíció ('szorzattopológia') szerint a téglák, vagyis az általuk generált \sigma-algebra éppen a szorzattér Borel-algebrája.

,,Kicsit meglepő, hogy ennyi elég legyen bonyolultabb halmazok mértékének meghatározásához, mert amint írod, ennyiből egyértelműen terjeszthető ki a mérték (...).'' Természetesen messze nem lesz minden részhalmaz mérhető (még akkor sem, ha teljessé tesszük úgy, hogy minden nullmértékű halmaz minden részhalmazát is nullmértékűnek vesszük, majd ismét kiterjesztünk). Egy 'kicsit' bonyolultabbakhoz elég a téglák halmaza, 'sokkal' bonyolultabbakhoz nem. De minden, amiről 'beszélni tudsz', mérhető lesz; nem mérhető halmaz definiálásához használnod kell a kiválasztási axiómát. És amiről 'beszélni tudsz', arról téglák segítségével beszélsz (aztán unió, metszet, komplementer, és beveted olykor a limeszt is, a megszámlálható végtelent is megfogva). Vagyis indulsz a (bázis-)nyíltakból, és generálod a Boreleket. Így már, remélem, nem annyira meglepő...

Előzmény: [1642] jenei.attila, 2012-01-25 23:50:06

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]