Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[1736] sakkmath2012-04-08 16:25:51

Megnéztem a könyvben a faladatot. A szerző a 86 - 88. oldalakon öt megjegyzést fűz a megoldáshoz. Az 1. megjegyzése még jó, a többi hibás! Például a 2. megjegyzés hibája ez: "\sqrt5 < 2,236".

Scharnitzky a 3. megjegyzésben elkövetett súlyos hibát a 4. és 5. sorszámúakban még tovább is ragozta.

Előzmény: [1731] kovátsnorbi1994, 2012-04-07 21:30:34
[1735] Róbert Gida2012-04-08 12:05:57

Nevezőben a zárójelben természetesen \frac 12 van.

Előzmény: [1734] Róbert Gida, 2012-04-08 11:51:50
[1734] Róbert Gida2012-04-08 11:51:50

De ez például már igaz: \frac {\sqrt {\sum _{n=0}^{\infty} (\frac {1}{3})^{2n+1}*\frac {1}{2n+1}}} {\sqrt {\sum _{n=0}^{\infty} (\frac {1}{3})^{2n+1}*\frac {1}{2n+1}}}=\sqrt {\log _3 2}

"Nem értem, hogy az egyenlőség két oldalán lévő érték hogyan lesz egyenlő, vagyis miért emelhető-e szumma jel elé az összegzési indexet is tartalmazó hányados, ha véges sok esetben nincs egyenlőség a jobb- és baloldal között."

Egy mondatban ennyi zöldséget rég olvastam.

Előzmény: [1731] kovátsnorbi1994, 2012-04-07 21:30:34
[1733] Róbert Gida2012-04-08 11:30:30

A hozzászólásban egy darab egyenlőtlenség sem szerepel.

Előzmény: [1732] Fálesz Mihály, 2012-04-08 05:32:40
[1732] Fálesz Mihály2012-04-08 05:32:40

A szóbanforgó egyenlőtlenség nem igaz.

Előzmény: [1731] kovátsnorbi1994, 2012-04-07 21:30:34
[1731] kovátsnorbi19942012-04-07 21:30:34

Jó estét minden Fórumozónak!

A segítségetekre lenne szükségem egy példatárban olvasott megjegyzés értelmezésével kapcsolatban: A megjegyzéshez kapcsolódó feladat az /1989-1992/-es Egyetemi Felvételi Feladatok (Scharnitzky-féle) példatár 87. oldalán olvasható, ahol konvergens Taylor-sorral adnak felső becslést \sqrt{log_2{3}}+\sqrt{log_3{2}} értékére. Itt leírják a következő átalakítást, ami nem világos számomra :

\frac{2\sum_{n=0}^\infty
\left(\frac13\right)
^{2n+1}\cdot{\frac1{2n+1}}}{2\sum_{n=0}^\infty
\left(\frac12\right)
^{2n+1}\cdot{\frac1{2n+1}}}=\sum_{n=0}^\infty
\left(\frac23\right)^{2n+1}

Megnéztem konkrét, véges sok esetre az átalakítást: A baloldali összeg kifejtésére (véges sok esetben) a következőt kaptam:

\frac{2\cdot\sum_{n=0}^3\left(\frac13\right)
^{2n+1}\cdot{\frac1{2n+1}}}{2\cdot\sum_{n=0}^3\left(\frac12\right)
^{2n+1}\cdot{\frac1{2n+1}}}=\frac{2\cdot[\left(\frac13\right)+\left(\frac13\right)^3\cdot
\left(\frac13\right)+\left(\frac13\right)^5\cdot
\left(\frac15\right)+\left(\frac13\right)^7\cdot
\left(\frac17\right)]}{2\cdot[\left(\frac12\right)+\left(\frac12\right)^3\cdot
\left(\frac13\right)+\left(\frac12\right)^5\cdot
\left(\frac15\right)+\left(\frac12\right)^7\cdot
\left(\frac17\right)]}

Míg a jobboldali szumma kifejtésére:

\sum_{n=0}^3
\left(\frac23\right)^{2n+1}=\left(\frac23\right)+\left(\frac23\right)^3+\left(\frac23\right)^5+\left(\frac23\right)^7

Nem értem, hogy az egyenlőség két oldalán lévő érték hogyan lesz egyenlő, vagyis miért emelhető-e szumma jel elé az összegzési indexet is tartalmazó \frac{1}{2n+1} hányados, ha véges sok esetben nincs egyenlőség a jobb- és baloldal között.

A választ köszönöm, és békés ünnepeket kívánok mindenkinek!

[1730] kler692012-03-25 17:14:21

Nagyon szépen köszönöm! :)

Előzmény: [1729] jenei.attila, 2012-03-25 17:06:28
[1729] jenei.attila2012-03-25 17:06:28

Mivel az f szögfelező, ezért az A pont f-re vett A' tükörképe rajta van a CB egyenesen. Tehát tükrözd A-t f-re (A'-őt kapod), majd az A'B és f egyenes metszéspontja megadja a C csúcsot.

Előzmény: [1728] kler69, 2012-03-25 16:52:41
[1728] kler692012-03-25 16:52:41

Kedves Mindenki! Sajnos már régen voltam iskolás, és a fiam ált. iskolás matekházija kifogott rajtunk. Kérem, aki tud, segítsen! A feladat: Adott egy háromszög A és B csúcsa, valamint a harmadik csúcsban levő szög szögfelezője. Szerkesszük meg a háromszöget! Köszönöm szépen!

[1727] Hölder2012-03-25 12:12:25

Ez nagyon t5etszik, esetleg még a g(t) függvény konkáv voltára egy elemi bizonyítás, és akkor minden elemi benne. A többi felmerülő kérdésre is megpróbálok majd reagálni.

Előzmény: [1725] Fálesz Mihály, 2012-03-23 16:32:36

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]