Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[178] Lóczi Lajos2007-03-22 16:45:18

A "többdimenziós mátrixokat" szokás tenzoroknak vagy multilineáris leképezéseknek nevezni (melyek bizonyos transzformációs szabályoknak engedelmeskednek). A multilineáris leképezés olyan, hogy több vektorhoz rendel egy számot, és mindegyik változójában lineáris. A fizikában, differenciálgeometriában, analízisben (pl. R2\toR2 függvények magasabbrendű deriváltjai multilineáris leképezések) sokszor használatosak.

Néhány keresőszó:

multilinear algebra, multilinear form, tensor, tensor product. Két példa:

http://documents.wolfram.com/v5/Built-inFunctions/ListsAndMatrices/StructureManipulation/FurtherExamples/Inner.html

http://documents.wolfram.com/v5/Built-inFunctions/NumericalComputation/MatrixOperations/FurtherExamples/Outer.html

Előzmény: [175] Willy, 2007-03-22 12:00:54
[177] jenei.attila2007-03-22 14:15:55

Tudtommal nem léteznek, ugyanis a mátrix nem egy téglalap sémába rendezett számcsoport (csak annak látszik). Lényegében a mátrix véges dimenziós vektortéren értelmezett korlátos lineáris operáció, amely szintén véges dimenziós vektortérbe képez. Ez röviden azt jelenti, hogy ha L az operáció, akkor L(a+t*b)=L(a)+t*L(b) minden a,b vektortérbeli elemre és minden t valós számra (ha a valós számtest feletti vektortérről van szó). Egy ilyen operáció reprezentálható egy mátrixszal, amelynek oszlopai megadják, hogy az L operáció értelmezési tartományának bázisvektorai az L által milyen vektorba képeződnek. Az általad ismert mátrixszorzás pedig nem más, mint az általuk reprezentált operációk egymás utáni alkalmazása által nyert operáció mátrix reprezentánsa. A mátrix összeadás pedig az operációk egyszerű függvény összeadása (természetesen a vektortérbeli összeadás szerint). Látható, hogy a téglalap séma csak technikai könnyítés (jelölés), és nem tartozik a mátrix lényegéhez.

Előzmény: [175] Willy, 2007-03-22 12:00:54
[176] HoA2007-03-22 14:06:25

Valóban, a legegyszerűbben a Sirpi által leírt módon, tehát pihagoraszi számhármasok "átfogóinak" összeszorzásával lehet ilyen számokat találni. De példád éppen arra mutat rá, hogy nemcsak ilyen megoldások vannak, és talán ezek az érdekesebbek.

A szorzásos módszerrel 65 = 5 * 13, vegyük tehát a (3,4,5) és (5,12,13) hármasokat, ezekből adódik (39,42,65) és (25,60,65). A primitív pithagoraszi hármasokat előállító képlet szerint (x2-y2,2xy,x2+y2) 65-öt mint két primitív "átfogó" egészszám-szorosát kapjuk: 13.(22+12) illetve 5.(32+22)

A Te példádban a 65 két primitív pithagoraszi hármas átfogójaként áll elő: x=8, y=1 választással (63,16,65), ahol 65=82+12, illetve x=7, y=4 választással (33,56,65) - és nem 53 - , ahol 65=72+42

Érdekes lenne bizonyítani, hogy végtelen sok szám áll elő többféleképpen két relatív prím négyzetszám összegeként, illetve hogy bármilyen n-re vannak olyan számok, melyek n féleképpen állíthatók elő két relatív prím négyzetszám összegeként.

Előzmény: [173] Borgi - Tóth Áron, 2007-03-21 22:05:13
[175] Willy2007-03-22 12:00:54

Nem tudom, hogy ide tartozik-e vagy nem, de:

Léteznek-e több dimenziós mátrixok a matematikában, és ha igen, akkor mire és hogyan lehet őket használni (pl. két 3D mátrixot hogyan lehet összeszorozni, vagy mi a determinánsa)?

[174] Sirpi2007-03-21 22:41:45

Jól érzed :-)

Vegyünk pithagoraszi számhármasokat, pl:

32+42=52

122+52=132

202+212=292

Az elsőt beszorozva (13.29)2-nel kapjuk, hogy

(3.13.29)2+(4.13.29)2=(5.13.29)2

Ugyanígy a 2.-at és a 3.-at is megfelelően megszorozva:

(12.5.29)2+(5.5.29)2=(5.13.29)2

(20.5.13)2+(21.5.13)2=(5.13.29)2

És ez a módszer tetszőlegesen kiterjeszthető (mivel végtelen sok különböző pithagoraszi számhármas van), és mint látható, a jobb oldalakon mindig ugyanaz a szám áll.

Előzmény: [173] Borgi - Tóth Áron, 2007-03-21 22:05:13
[173] Borgi - Tóth Áron2007-03-21 22:05:13

na, találtam egyet, ileltve hát kettőt 16 63, 65; 33 53, 65

ebböl arra merek következtetni hogy létezik sok ilyen pár, és létezik olyan x szám amihez n db, iylen pár tartozik.

[172] Borgi - Tóth Áron2007-03-21 20:58:25

sziasztok. remélem jó helyre írom a kérdésem.

lehet hogy a válasz már egyértelmű dolog, de én nem tudom, ezért bátorkodom megkérdezni

van-e olyan négyzetszám, ami több mint 1 négyzetszámösszeg párból előállitható?!

tehát

a2 + b2 = c2

és a,b,c egész számok. létezik-e olyan c, amihez több a és b pár tartozik?

[171] fermel2007-03-17 20:27:28

Ismét egy kombinatorikai feladat megoldásában szeretnék segítséget kérni. 13-as totóról van szó. Ebből 6 kimenetele egyértelmű, a további 7 pedig kétesélyes. Hány "szelvényt" kell legkevesebb kitölteni ahhoz, hogy biztosan legyen 12 találat? Adjuk is meg azokat a kitöltéseket, amelyek ezt biztosítják!

Odáig eljutottam, hogy 16 szelvény kitöltése elegendő. Viszont elképzelésem sincs arról, hogy milyen szisztéma szerint "töltsem ki a 16 szelvényt", hogy biztosan legyen 12 találat. (Végül is 7 kétesélyesből kell hatot biztosan eltalálni)

Köszönöm a segítséget: fermel

[170] Lóczi Lajos2007-03-08 14:53:08

Nézd meg pl. a Sárközy-Surányi: Számelméletfeladat-gyűjteményt, illetve annak függelékét. (Teljes bizonyításokat nem fogsz találni mindkettőre, de sok útmutatást igen.)

Előzmény: [169] S.Ákos, 2007-03-07 20:14:06
[169] S.Ákos2007-03-07 20:14:06

Sziasztok!

Meg tudnáktok mondani, hogy hol lehet arra bizonyítást találni, hogy

|\sum_{i=1}^n i^{-1}-log_e n|\le1

illetve

|\sum_{i=1}^n p_i^{-1}-log_elog_en|\le15

mindig mindig teljesül(pi az i-edik prímszám)?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]