Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[1854] Lóczi Lajos2013-05-07 15:17:27

Akkor -- továbbra is csak a valós számok körében maradva -- azt kérdezném, hogy mi az oka annak, hogy számos integráltáblázatban azt látom, amit írtál, miszerint


\int \frac{1}{x} dx=\ln |x| +c.

Azt írod, hogy az értelmezési tartomány legyen a maximális, azaz a 0-tól különböző valósok halmaza. Ha lerajzoljuk ezeket a függvényeket, akkor látszik, hogy mind tengelyesen szimmetrikusak. Én mondok egy bővebb függvényosztályt eredményül:


\int \frac{1}{x} dx=\ln(x) +c_1,

ha x>0, és


\int \frac{1}{x} dx=\ln(-x) +c_2,

ha x<0. Vagyis itt a két ág függőleges eltolása már nem feltétlenül ugyanaz.

Miért nem ezt a bővebb osztályt szokták akkor a könyvek feltüntetni?

Előzmény: [1851] polarka, 2013-05-07 10:52:50
[1853] polarka2013-05-07 11:56:53

De ezen értékek csak a képzetes részt befolyásolják. Nem látom, hogy miért lenne probléma, ha tudok arról is, hogy az illető milyen úton (jelen esetben hányszor kerüli meg az origót és mekkora két pont közötti szögtávolság).

Mert én úgy látom, hogy az integrál felfogható úgy mint, egy vektor-vektor fv-ben végzett mozgás során végzett vonalintegrál. Ahol a valós rész a szokásos skalárszorzatot, a képzetes rész pedig a vektoriális szorzat értékét hordozza.

Előzmény: [1852] Alma, 2013-05-07 10:58:12
[1852] Alma2013-05-07 10:58:12

Az a probléma (határozott integrálban gondolkodva), hogy míg valósban két szám között csak egyféle szakaszon tudsz integrálni (a valós tengely megfelelő részén), a komplex síkon két számot különböző görbékkel tudsz összekötni. Így c1 és c2 közötti határozott integrált több különböző görbén is értelmezheted, és sajnos ezek bizonyos függvényeknél különböző értékeket adhatnak. Ha a függvényednek nincs pólusa, akkor a különböző görbéken elvégzett integrálok értékei megegyeznek. Az 1/x függvénynek van pólusa x=0-ban.

Előzmény: [1851] polarka, 2013-05-07 10:52:50
[1851] polarka2013-05-07 10:52:50

De R\subsetC, így amit leírtam \varphi=0 vagy \pi(+k2\pi) esetén visszaadják a valós értelmezést (annál kicsit többet a fázisok miatt). k\inZ; r\inR+; \varphi\inR

Ha x\inR\{0}-ra szorítkozunk, és értékkészletnek is R-et vesszük, akkor az előzőkből Re(\sim)-vel adódik:

\sim=ln |x|+c

Előzmény: [1849] Lóczi Lajos, 2013-05-07 07:01:45
[1850] Fálesz Mihály2013-05-07 09:10:20

Az 1. képlet tényleg működik \Delta\ge0-ra is.

Előzmény: [1845] polarka, 2013-05-06 17:27:43
[1849] Lóczi Lajos2013-05-07 07:01:45

Ne szaladj ennyire előre :) Egyelőre csak a valós számok körében akarjunk dolgozni, akárcsak korábban. De kérlek, ne csak formulákat írj, hanem az általuk meghatározott függvények értelmezési tartományait is tüntesd fel.

Előzmény: [1848] polarka, 2013-05-06 23:47:03
[1848] polarka2013-05-06 23:47:03

Én a következőképpen gondolnám:

\int\frac{1}{x}dx=\ln x +c=\ln re^{i\varphi}+c=\ln r+i\varphi+c

ahol x\inC, ha nem r és \varphi az adott, akkor r=\sqrt{{\rm Im}(x)^2+{\rm Re}(x)^2}; \varphi=arctan 2(Im(x),Re(x))

Előzmény: [1847] Lóczi Lajos, 2013-05-06 19:29:36
[1847] Lóczi Lajos2013-05-06 19:29:36

Még egy dologra rá szeretném irányítani a figyelmet. De ehhez az kell, hogy megmondd, hogyan értelmezed pontosan az \int\frac{1}{x}dx szimbólumot.

Előzmény: [1846] polarka, 2013-05-06 17:47:25
[1846] polarka2013-05-06 17:47:25

Nem a megoldás volt gyanús, hanem azon kezdtem gyanakodni, hogy ebben az integrálban azért több van, mint amit a bolygómozgásnál közöltek és be is igazolódott, hogy azért mégsem olyan egyszerű és volna még mit diszkutálni róla, hogy minden világos legyen. Ott csak közöltek egy megoldást, ami azért ránézésből egyáltalán nem volt triviális (ott még ez az egyszerűbb alak sem volt leírva).

Elfogadom én, hogy valós számokról van ott szó. A kérdésem arra irányul, hogy minden egyes feltétel csak azért van, hogy ez stimmeljen és nem lehetne egy megoldást felírni, amiből tovább vezetve egyéb feltételekkel, diszkusszióval megkaphatóak, amik ott szerepelnek. Mivel én úgy látom, hogy az elsőből a többi következik (azt hiszem a 3. kivételével, de lehet arról is beláttam már, hogy mégis?), ezért úgy érzem, hogy elég volna az elsőt közölni, mint megoldást. És a többit meg jelezvén, hogy azon megoldás diszkutálása bizonyos feltételek mellett és nem pedig egyenrangú megoldások. De lehet tévedek, ezért is kértem a segítségetek.

Igen, ezt én is megfigyeltem, de ha találok hibát, akkor azt legalább a sajátomban átjavítom vagy bővítem, hogy világosabb legyen, hogy ott miről is van szó. Egyszer az elejétől nekiláttam ennek, míg bele nem untam és találtam bőven elgépeléseket. Vagy nagyon nem intuitív jelöléseket.

Előzmény: [1843] Lóczi Lajos, 2013-05-06 15:47:05
[1845] polarka2013-05-06 17:27:43

A logaritmus kezelését úgy gondolom, hogy jelen esetben megkönnyíti az, hogy van egy szabad konstansuk, amit majd a peremfeltétel szab meg. Ezért a komplex logaritmusok közül bármelyiket választva is végül a peremfeltételhez illeszkedő megoldásnál a konstans majd helyretesz mindent.

Igazad van, de a következőképpen egyeznek meg R-ben, \frac{1}{\sqrt{a}} szorzótól eltekintve:

{\rm ar~ch~} \frac{2ax+b}{\sqrt{|\Delta|}}= \ln\left( \frac{2ax+b}{\sqrt{|\Delta|}} + \sqrt{\frac{(2ax+b)^2}{|\Delta|}-1}\right) = \ln\left[\frac{1}{\sqrt{|\Delta|}}\left(2ax+b +\sqrt{(2ax+b)^2-{|\Delta|}}\right)\right] = \ln\left(2ax+b +\sqrt{(2ax+b)^2-{|\Delta|}}\right) + C

= az 1. sorral \Delta<0 esetén, ami pedig hasonlóan \Delta-val felírva: \ln\left(2ax+b +\sqrt{(2ax+b)^2+{\Delta}}\right) -val egyezik meg.

Azt figyeltem meg, hogy az 1. egyenletben a konstansból behozva \frac{1}{\sqrt{\Delta}}-t arsh ,arch ,arcsin ,arccos  is kihozható eredményként, attól függően, hogy "a"-ra és "\Delta"-ra milyen feltételt szabunk. Tehát szerintem az 1. egyenlet általánosabb ilyen tekintetben, mint a többi.

Előzmény: [1842] Fálesz Mihály, 2013-05-06 15:27:29

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]