Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[1857] polarka2013-05-07 16:36:30

Igen.

Előzmény: [1856] Lóczi Lajos, 2013-05-07 16:13:32
[1856] Lóczi Lajos2013-05-07 16:13:32

Egyetértek, a cél nyilván az, hogy ezeket a formulákat pl. területszámításra használjuk. De akkor meg kell kérdezzem, hogy a korábbi c1=c2=c választással kapott primitívfüggvény-sereg megfelel-e a területszámítási intuíciónknak:

\int_{-1}^{1}\frac{1}{x}dx=c-c=0?

Vagyis ebben a példában a szimmetrikus területet valóban 0-nak szeretnénk definiálni?

Előzmény: [1855] polarka, 2013-05-07 16:06:46
[1855] polarka2013-05-07 16:06:46

Talán, mert ha majdan függvény alatti területként szeretné valaki használni, akkor a következő határozott integrált kapnánk \int_{-c}^{c} \frac{1}{x} dx=c_1-c_2\ne 0, ahol c\inR+

Ami nem felelne meg a területszámítási intuíciónak.

Előzmény: [1854] Lóczi Lajos, 2013-05-07 15:17:27
[1854] Lóczi Lajos2013-05-07 15:17:27

Akkor -- továbbra is csak a valós számok körében maradva -- azt kérdezném, hogy mi az oka annak, hogy számos integráltáblázatban azt látom, amit írtál, miszerint


\int \frac{1}{x} dx=\ln |x| +c.

Azt írod, hogy az értelmezési tartomány legyen a maximális, azaz a 0-tól különböző valósok halmaza. Ha lerajzoljuk ezeket a függvényeket, akkor látszik, hogy mind tengelyesen szimmetrikusak. Én mondok egy bővebb függvényosztályt eredményül:


\int \frac{1}{x} dx=\ln(x) +c_1,

ha x>0, és


\int \frac{1}{x} dx=\ln(-x) +c_2,

ha x<0. Vagyis itt a két ág függőleges eltolása már nem feltétlenül ugyanaz.

Miért nem ezt a bővebb osztályt szokták akkor a könyvek feltüntetni?

Előzmény: [1851] polarka, 2013-05-07 10:52:50
[1853] polarka2013-05-07 11:56:53

De ezen értékek csak a képzetes részt befolyásolják. Nem látom, hogy miért lenne probléma, ha tudok arról is, hogy az illető milyen úton (jelen esetben hányszor kerüli meg az origót és mekkora két pont közötti szögtávolság).

Mert én úgy látom, hogy az integrál felfogható úgy mint, egy vektor-vektor fv-ben végzett mozgás során végzett vonalintegrál. Ahol a valós rész a szokásos skalárszorzatot, a képzetes rész pedig a vektoriális szorzat értékét hordozza.

Előzmény: [1852] Alma, 2013-05-07 10:58:12
[1852] Alma2013-05-07 10:58:12

Az a probléma (határozott integrálban gondolkodva), hogy míg valósban két szám között csak egyféle szakaszon tudsz integrálni (a valós tengely megfelelő részén), a komplex síkon két számot különböző görbékkel tudsz összekötni. Így c1 és c2 közötti határozott integrált több különböző görbén is értelmezheted, és sajnos ezek bizonyos függvényeknél különböző értékeket adhatnak. Ha a függvényednek nincs pólusa, akkor a különböző görbéken elvégzett integrálok értékei megegyeznek. Az 1/x függvénynek van pólusa x=0-ban.

Előzmény: [1851] polarka, 2013-05-07 10:52:50
[1851] polarka2013-05-07 10:52:50

De R\subsetC, így amit leírtam \varphi=0 vagy \pi(+k2\pi) esetén visszaadják a valós értelmezést (annál kicsit többet a fázisok miatt). k\inZ; r\inR+; \varphi\inR

Ha x\inR\{0}-ra szorítkozunk, és értékkészletnek is R-et vesszük, akkor az előzőkből Re(\sim)-vel adódik:

\sim=ln |x|+c

Előzmény: [1849] Lóczi Lajos, 2013-05-07 07:01:45
[1850] Fálesz Mihály2013-05-07 09:10:20

Az 1. képlet tényleg működik \Delta\ge0-ra is.

Előzmény: [1845] polarka, 2013-05-06 17:27:43
[1849] Lóczi Lajos2013-05-07 07:01:45

Ne szaladj ennyire előre :) Egyelőre csak a valós számok körében akarjunk dolgozni, akárcsak korábban. De kérlek, ne csak formulákat írj, hanem az általuk meghatározott függvények értelmezési tartományait is tüntesd fel.

Előzmény: [1848] polarka, 2013-05-06 23:47:03
[1848] polarka2013-05-06 23:47:03

Én a következőképpen gondolnám:

\int\frac{1}{x}dx=\ln x +c=\ln re^{i\varphi}+c=\ln r+i\varphi+c

ahol x\inC, ha nem r és \varphi az adott, akkor r=\sqrt{{\rm Im}(x)^2+{\rm Re}(x)^2}; \varphi=arctan 2(Im(x),Re(x))

Előzmény: [1847] Lóczi Lajos, 2013-05-06 19:29:36

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]