Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2066] Fálesz Mihály2015-12-30 09:42:03

Arra gondoltam, hogy a Fejes-Tóth féle programot csináljuk végig.

Vegyük a poláris háromszöget. Az eredeti háromszög területéből következtethetünk a poláris háromszög kerületére. A poláris háromszögnek ismerjük egy csúcsát, az ebből kiinduló oldal-főköröket és a kerületet. Ezek meghatározzák a harmadik oldalhoz hozzáírt kört...

Előzmény: [2064] Sinobi, 2015-12-28 23:20:22
[2065] mooosa2015-12-29 17:15:00

Legyen f eleme C(I) folytonos függvény az I = (0, 1) nyílt intervallumon, és tegyük fel, hogy lim x->0+ f(x) = +végtlen , határozzuk meg a g(x) := sin f(x) kompozíciófüggvény torlódási pontjainak halmazát x->+0-ra!

[2064] Sinobi2015-12-28 23:20:22

Ezt dobta ki a kereső: [link]

Előzmény: [2063] Fálesz Mihály, 2015-12-28 14:53:26
[2063] Fálesz Mihály2015-12-28 14:53:26

Esetleg tisztába tehetnénk a Lexell-körívet.

Előzmény: [2054] Sinobi, 2015-12-11 21:17:47
[2062] Kemény Legény2015-12-15 13:50:00

A dominált konvergencia tétellel/Fatou-lemmával valóban be lehet látni ilyeneket. Legyen az &tex;\displaystyle f_n&xet; függvény az &tex;\displaystyle n&xet;-edik halmaz (ami tetszőleges mérhető halmaz, így intervallum vagy akár intervallumok uniója is lehet) karakterisztikus függvénye (a halmazon 1, kívül 0). Ekkor a konstans 1 függvény egy integrálható majoránsa az &tex;\displaystyle f_n&xet;-eknek, így pl. a Fatou-lemma alapján &tex;\displaystyle limsup_{n\to\infty} \int f_n d\lambda\le \int limsup_{n\to\infty} f_n d\lambda&xet;, ahol az utóbbi limeszt pontonként értjük. Ha az &tex;\displaystyle f_n&xet;-eket meghatározó halmazok mértékére van egy közös alsó korlát K, akkor a bal oldali határérték is legalább K. Ha viszont egy pontot csak véges sok &tex;\displaystyle f_n&xet; fed le, akkor a jobb oldali integrálban szereplő &tex;\displaystyle limsup_{n\to\infty} f_n =0&xet; abban a pontban, egyébként 1. Mivel a jobb oldal nem lehet 0, így az az erősebb állítás is kijött, hogy a végtelen sokszor lefedett pontok halmaza nem lehet nullmértékű (sőt legalább K mértékű kell legyen).

Előzmény: [2058] Sinobi, 2015-12-14 22:11:22
[2061] nadorp2015-12-15 09:28:43

Hülyeség, felejtsd el.

Előzmény: [2060] nadorp, 2015-12-15 09:25:58
[2060] nadorp2015-12-15 09:25:58

Nem arra gondoltál, hogy az egész intervallumot lefedjük zárt intervallumokkal?

Előzmény: [2055] Sinobi, 2015-12-13 21:30:23
[2059] Róbert Gida2015-12-14 23:42:42

&tex;\displaystyle K>0&xet; alsó korláttal meg már igaz: legyen m>0 olyan egész, hogy &tex;\displaystyle \frac 1m<K&xet;, ekkor mivel minden intervallum legalább &tex;\displaystyle K&xet; hosszú, ezért tartalmaz legalább egy darab &tex;\displaystyle \frac lm&xet; alakú pontot. Így skatulyaelv miatt a végtelen sok intervallum valamelyik ilyen pontot végtelen sokszor tartalmazza. "Hasonló" gondolatmenet megy magasabb dimenzióban.

Előzmény: [2058] Sinobi, 2015-12-14 22:11:22
[2058] Sinobi2015-12-14 22:11:22

És ha az intervallumok méretének adunk valami K alsó korlátot? (azt sejtem, hogy így már nem lehet)

És ha nagyobb (mondjuk 2) dimenzióban akarunk ilyen, >K méretű kockákkal fedni?

Vagy, ha még azt is megengedjük, hogy olyan alakzatokkal fedünk, amelyek előállnak véges sok téglatest uniójaként/metszeteként?

(ezeket próbáltam, sikertelenül. Állítólag valamelyik Lebesgue integrálos tétellel könnyű, de én azt nem tudom. Sőt, még az eredményt sem igazán.)

Előzmény: [2056] Róbert Gida, 2015-12-14 17:34:37
[2057] csábos2015-12-14 20:48:29

Nagyon szép válasz!

Előzmény: [2056] Róbert Gida, 2015-12-14 17:34:37

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]