Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2109] epsilon2016-11-22 08:46:46

Ez ugyancsak a sinx/siny=sin30∘/sin110∘ összefüggéshez vezet.

[2108] Vonka Vilmos Úr2016-11-19 19:34:39

Kiindulás egy elemi megoldáshoz: tekintsd azt a \(\displaystyle D\) pontot az \(\displaystyle AC\) oldalon, amelyre a \(\displaystyle DBC\) szög 20 fokos.

Előzmény: [2100] epsilon, 2016-11-18 17:46:19
[2107] csábos2016-11-19 18:11:07

Burnside-lemma egy permutációcsoportban. Az orbitok száma megegyezik a fixpontok átlagos számával. A képlet a gyöngyfűzéseket az \(\displaystyle N\)-szög szimmetriái szerint sorolja fel, összeadja azok fixpontjait, és utána átlagolja \(\displaystyle 2N\)-nel. Az \(\displaystyle A\) szám a tükrözések általi fixpontokat jelzi. Nyilván, ha van legalább két páratlan számú szín, akkor nincs tükörszimmetrikus gyöngyfűzés, stb.

Előzmény: [2105] epsilon, 2016-11-19 17:35:37
[2106] epsilon2016-11-19 17:38:24

Köszi w, azt hittem, hogy erre az eleminek tűnő feladatnak épp olyan elemi megoldása van, mint amilyennek tűnik, mert a sinx/siny= sina/sinb ha x+y= a+b alapján x=a és y=b következik, nehezebbnek tűnik bizonyítani mint az eredeti feladat.

Előzmény: [2103] w, 2016-11-18 23:02:11
[2105] epsilon2016-11-19 17:35:37

Hát ez igen Csábos! Erre nem számítottam, hiszen én mind azt hittem, hogy az ismétléses permutáció képletéből kiindulva, valahogyan le lehet vezetni az általánosabb esetet bár két színű golyóra, de ezek a képletek nagyon jól tükrözik a feladat általánosításának a komplexitását. valami szakirodalmi forrásanyagot tudsz-e adni, ahol ezzel az általános problémával foglalkoznak?

Előzmény: [2104] csábos, 2016-11-19 17:10:11
[2104] csábos2016-11-19 17:10:11

Íme a képlet

Legyen \(\displaystyle g_1, g_2, ..., g_k\) a különböző színű gyöngyök száma

\(\displaystyle N = \sum_{i=1}^{i=k}{g_i}\)

\(\displaystyle \text{ Nyakláncok száma}=(A+B)/2N\)

Ahol

- ha 2-nél több páratlan darabszámú szín van: A=0

- ha 2 páratlan darabszámú szín van:

\(\displaystyle A =\frac{((N/2)-1)!}{\prod_{i=1}^{i=k}(\left\lfloor g_i/2\right\rfloor)!}\cdot N\)

- ha 0 vagy 1 páratlan darabszámú szín van:

\(\displaystyle A =\frac{(N/2)!}{\prod_{i=1}^{i=k}(\left\lfloor g_i/2\right\rfloor)!}\cdot N\)

Legyenek \(\displaystyle d\) a \(\displaystyle g_1, g_2, ..., g_k\)-k legnagyobb közös osztójának osztói

\(\displaystyle B=\sum_{j|d}\frac{(N/j)!}{\prod_{i=1}^{i=k}(g_i/j)!}\cdot \varphi(j)\)

Előzmény: [2093] Sinobi, 2016-11-18 00:39:43
[2103] w2016-11-18 23:02:11

Az adatok mindenképpen elegendőek, mert a megadott szögek hasonlóság erejéig meghatározzák az ábrát.

Ilyen feladatoknál mindig szokott lenni

(1.) valami kedves kreatív szerkesztés, ami a szög megsejtése után nagyon elemi megfontolásokkal vezeti le annak nagyságát (sokszor pakolnak valahova szabályos háromszöget, vagy használják, hogy egy háromszög szögfelezői egy ponton mennek át),

(2.) egy szabályos \(\displaystyle 18\)-szög, aminek néhány átlójának egy ponton való áthaladásával ekvivalens a feladat.

A legegyszerűbb és legkönnyebb módszer azonban (3.) a szinuszarányokkal való számolás szokott lenni. A következő képletet használjuk: ha \(\displaystyle ABC\) háromszögben \(\displaystyle D\) egy pont a \(\displaystyle BC\) oldal belsejében, akkor

\(\displaystyle \frac{BD}{DC}=\frac{AB}{AC}\cdot \frac{\sin BAD\angle}{\sin DAC\angle}. \)

Ez a képlet az \(\displaystyle ABD\triangle\) és \(\displaystyle ACD\triangle\) szinusztételeinek leosztásából adódik.

A feladat megoldása. Mivel \(\displaystyle BAC\angle = 20^\circ\), ezért \(\displaystyle EB=EA\), ahonnan \(\displaystyle BEF\angle=x\) és \(\displaystyle FEA\angle=y\) esetén \(\displaystyle x+y=140^\circ\), továbbá

\(\displaystyle \frac{BF}{FA}=\frac{EB}{EA}\cdot \frac{\sin BEF\angle}{\sin FEA\angle}=\frac{\sin x}{\sin y} \)

és a szinusztétel szerint

\(\displaystyle \frac{BF}{FA}=\frac{CB}{CA}\cdot \frac{\sin BCF\angle}{\sin FCA\angle}=\frac{\sin 20^\circ}{\sin 80^\circ}\cdot \frac{\sin 50^\circ}{\sin 30^\circ}=\frac{\sin 20^\circ\cos 40^\circ}{4\sin 20^\circ\cos 20^\circ\cos40^\circ\cdot \frac 12}=\frac{1/2}{\cos 20^\circ}=\frac{\sin 30^\circ}{\sin 110^\circ}. \)

Tehát

\(\displaystyle \frac{\sin x}{\sin y}=\frac{\sin 30^\circ}{\sin 110^\circ}. \)

Ebből \(\displaystyle x+y=140^\circ\) miatt \(\displaystyle x=30^\circ\), \(\displaystyle y=110^\circ\) következik.

//Ugyanis \(\displaystyle x+y=140^\circ\) feltételt rögzítve, \(\displaystyle x\) növelésével, \(\displaystyle y\) csökkentésével \(\displaystyle \frac{\sin x}{\sin y}\) is növekszik. Ezt úgy láthatjuk, ha felveszünk egy \(\displaystyle AOB\angle=140^\circ\)-os szögtartományban egy \(\displaystyle P\) pontot az \(\displaystyle AB\) szakaszon; ekkor \(\displaystyle \frac{\sin x}{\sin y}=\frac{d(P,AO)}{d(P,BO)}\), ha \(\displaystyle PO\) az \(\displaystyle AO\)-val és \(\displaystyle BO\)-val rendre \(\displaystyle x,y\) szöget zár be. Ha \(\displaystyle x\) nő és \(\displaystyle y\) csökken, \(\displaystyle d(P,AO)\) nő és \(\displaystyle d(P,BO)\) csökken, így az arány nő.//

Előzmény: [2100] epsilon, 2016-11-18 17:46:19
[2102] csábos2016-11-18 21:29:45

Itt a képlet arra, ha 6 narancssárga, 12 kék és 18 zöld gyöngy van. A legnagyobb közös osztó 6. A tagok a 18 szög azon szimmetriáinak felelnek meg, amelyek rendje 6 osztója, 6 a lnko. A kombinatorikus tag együtthatója minden \(\displaystyle d\) osztóra \(\displaystyle \varphi(d)\). A 36-os együttható a tükrözéseknek felel meg. Így valóban csak \(\displaystyle d(n)+1 \) tag van.

\(\displaystyle \frac{ \binom{36}{18}\cdot\binom{18}{12} +\binom{18}{9}\cdot\binom{9}{6} + 36\cdot \binom{18}{9}\cdot\binom{9}{6} + 2 \cdot \binom{6}{3}\cdot\binom{3}{2} + 2 \cdot \binom{12}{6}\cdot\binom{6}{4} }{72} = \\ \frac{\frac{36!}{6!\cdot 12!\cdot 18!} + 37\cdot \frac{18!}{9!\cdot 6!\cdot 3!} + 2 \cdot \frac{6!}{3!\cdot 2!} + 2 \cdot \frac{12!}{6!\cdot 4!\cdot 2!}}{72} = \\ \frac{168\,470\,811\,709\,200 + 37\cdot4\,084\,080 + 2\cdot13\,860 + 2\cdot60}{72} = \\ 2\,339\,874\,484\,000 \)

Előzmény: [2101] csábos, 2016-11-18 20:51:31
[2101] csábos2016-11-18 20:51:31

Ehhez meg kell számolni a különböző szimmetriák fixpontjait és beszorozni egy kombinatorikusan kapott együtthatóval. Itt tükrözések, forgatások és identitás jön szóba. Találtam a neten egy példát

http://m.cdn.blog.hu/kr/krisztikt/image/altalam_keszitett.pdf

26.oldal

Előzmény: [2097] epsilon, 2016-11-18 17:16:05
[2100] epsilon2016-11-18 17:46:19

Közben itt egy másik feladat, mértan, mind körben forgok vele, mintha nem lennének elegendők az adatok, van e valami tippetek:

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]