Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2146] marcius82017-12-03 16:43:13

Pontosítok az előbbi hozzászólásomon: Ha valamelyik \(\displaystyle y_{i,j}\) hányados valamilyen \(\displaystyle x_i\) és valamilyen \(\displaystyle j\) esetén benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között, akkor a \(\displaystyle P_i\) párt egy mandátumot kap. Továbbá a \(\displaystyle P_i\) párt annyi mandátumot kap, ahány \(\displaystyle y_{i,j}\) hányados benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között valamilyen \(\displaystyle x_i\) és valamilyen \(\displaystyle j\) esetén.

Előzmény: [2145] marcius8, 2017-12-03 14:30:36
[2145] marcius82017-12-03 14:30:36

Anélkül, hogy politikát hoznék a fórumba... Magyarországon az országgyűlési mandátumok egy részét úgynevezett listás választások alapján lehet megnyerni. Ez a következőképpen történik: Tegyük fel, hogy van \(\displaystyle n\) mandátum, és a választásokon indulnak a \(\displaystyle P_1\), \(\displaystyle P_2\), \(\displaystyle P_3\),.... pártok. A \(\displaystyle P_1\) párt kap \(\displaystyle x_1\) szavazatot, a \(\displaystyle P_2\) párt kap \(\displaystyle x_2\) szavazatot, a \(\displaystyle P_3\) párt kap \(\displaystyle x_3\) szavazatot,... Legyen \(\displaystyle y_{i,j}=x_i/j\), ahol \(\displaystyle j\) egy \(\displaystyle n\) értékénél nem nagyobb pozitív egész szám. Az így kapott \(\displaystyle y_{i,j}\) hányadosokat csökkenő sorrendbe rendezik, és meghagyják az első \(\displaystyle n\) legnagyobb hányadost, a többit elfelejtik. Ezek után, ha valamelyik \(\displaystyle x_i\) esetén az \(\displaystyle y_{i,j}\) hányados benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között, akkor a \(\displaystyle P_i\) párt kap egy mandátumot. A mandátumok így történő szétosztása mennyiben tükrözi a választók akaratát?

[2144] marcius82017-12-03 14:06:11

Köszi a megoldást! Én valahogyan sorokkal próbálkoztam, előbb, de inkább utóbb az is meg lesz, akkor azt le is fogom írni. Tisztelettel: Bertalan Zoltán.

Előzmény: [2143] jonas, 2017-11-29 17:06:20
[2143] jonas2017-11-29 17:06:20

Ez egy tanulságos Markov-láncos feladat, érdemes végigszámolni.

Legyen a húzások száma \(\displaystyle T \). Minden \(\displaystyle 0 \le t < T \) egészre nézzük meg, hogy \(\displaystyle t \) húzás után a legközelebbi húzásban hány cetli közül kell húzni, ez legyen \(\displaystyle X_t \), valamint legyen \(\displaystyle Y_t \) azon törpék száma, akik önmagukat húzzák ebben a húzásban. Tehát \(\displaystyle 0 \le t < T \) esetén \(\displaystyle 2 \le X_t \le 7 \). Terjesszük ki az \(\displaystyle X \) sorozatot úgy, hogy \(\displaystyle X_t = 0 \) ha \(\displaystyle T \le t \).

Nyilván \(\displaystyle X_0 = 7 \). A játék szabályai szerint ha \(\displaystyle 0 \le t < T \), akkor \(\displaystyle X_{t+1} = Y_t \), kivéve ha \(\displaystyle Y_t = 1 \), amely esetben \(\displaystyle X_{t+1} = 7 \). Mármost rögzített \(\displaystyle X_t \) mellett \(\displaystyle Y_t \) eloszlása nem függ az előzményektől. Az eloszlást pontosan meg is tudjuk adni: \(\displaystyle P(Y_t = y \mid X_t = x) = \textrm{A008290}(y, x)/x! \). Itt az A008290(y, x) szám x elem azon permutációinak a száma, amiben pontosan y fixpoint van, az OEIS A008290 sorozata szerint. Ez a valószínűség nulla, ha \(\displaystyle x < y \). Íme a feltételes eloszlások táblázata.

\(\displaystyle x =\) 2 3 4 5 6 7
\(\displaystyle P(Y_t=0 \mid X_t=x) =\) 1/2 2/6 9/24 44/120 265/720 1854/5040
\(\displaystyle P(Y_t=1 \mid X_t=x) =\) 0 3/6 8/24 45/120 264/720 1855/5040
\(\displaystyle P(Y_t=2 \mid X_t=x) =\) 1/2 0 6/24 20/120 135/720 924/5040
\(\displaystyle P(Y_t=3 \mid X_t=x) =\) 0 1/6 0 10/120 40/720 315/5040
\(\displaystyle P(Y_t=4 \mid X_t=x) =\) 0 0 1/24 0 15/720 70/5040
\(\displaystyle P(Y_t=5 \mid X_t=x) =\) 0 0 0 1/120 0 21/5040
\(\displaystyle P(Y_t=6 \mid X_t=x) =\) 0 0 0 0 1/720 0
\(\displaystyle P(Y_t=7 \mid X_t=x) =\) 0 0 0 0 0 1/5040

A fentiekből az is következik, hogy ha rögzítjük \(\displaystyle x \)-et ahol \(\displaystyle 1 < x \), akkor az \(\displaystyle X_t = x \) feltétel mellett \(\displaystyle X_{t+1} \) eloszlása független az előzményektől, vagyis az \(\displaystyle X_0, \dots, X_{t-1} \) számoktól (és mellesleg még a húzott nevektől is), és ez a feltételes eloszlás bármely \(\displaystyle t \)-re ugyanaz. Ez azt jelenti, hogy \(\displaystyle X \) egy stacionáris markov lánc. Mivel \(\displaystyle X_{t+1} \) az \(\displaystyle Y_t \) fent leírt függvénye eloszlásból, és \(\displaystyle Y_t \) feltételes eloszlását az előbb kiszámoltuk, ezért \(\displaystyle X_{t+1} \) feltételes eloszlását (az átmenet valószínűségeket) is meg tudjuk adni.

\(\displaystyle x =\) 2 3 4 5 6 7
\(\displaystyle P(X_{t+1}=0 \mid X_t=x) =\) 1/2 2/6 9/24 44/120 265/720 1854/5040
\(\displaystyle P(X_{t+1}=2 \mid X_t=x) =\) 1/2 0 6/24 20/120 135/720 924/5040
\(\displaystyle P(X_{t+1}=3 \mid X_t=x) =\) 0 1/6 0 10/120 40/720 315/5040
\(\displaystyle P(X_{t+1}=4 \mid X_t=x) =\) 0 0 1/24 0 15/720 70/5040
\(\displaystyle P(X_{t+1}=5 \mid X_t=x) =\) 0 0 0 1/120 0 21/5040
\(\displaystyle P(X_{t+1}=6 \mid X_t=x) =\) 0 0 0 0 1/720 0
\(\displaystyle P(X_{t+1}=7 \mid X_t=x) =\) 0 3/6 8/24 45/120 264/720 1856/5040

Most akkor számoljuk ki \(\displaystyle T \) várható értékét. Erre stacionáris Markov-láncoknál a szokásos módszer a következő. Jelölje a maradék lépések számának, vagyis \(\displaystyle (T-t) \)-nek, a várható értékét \(\displaystyle a_x \) az \(\displaystyle X_t = x \) feltétel mellett. A fentiek miatt a maradék lépések számának feltételes eloszlása is független az előzményektől, és \(\displaystyle t \)-től is. Nyilván \(\displaystyle a_0 = 0 \). A többi (\(\displaystyle 2 \le x \le 7\)) esetre felírhatunk egy-egy lineáris egyenletet a fenti átmenet valószínűségek alapján.

\(\displaystyle a_x = 1 + \sum_k P(X_{t+1}=k \mid X_t=x) \cdot a_k \)

Az egyenletrendszer megoldása után, mivel \(\displaystyle X_0 = 7 \), ezért a húzások számának várható értéke \(\displaystyle a_7 \).

A konkrét esetben az egyenletrendszer a következő.

\(\displaystyle (a_2, a_3, a_4, a_5, a_6, a_7) \cdot \begin{pmatrix} 1/2-1 &0 &6/24 &20/120 &135/720 & 924/5040 \\ 0 &1/6-1 &0 &10/120 & 40/720 & 315/5040 \\ 0 &0 &1/24-1 & 0 & 15/720 & 70/5040 \\ 0 &0 &0 & 1/120-1 & 0 & 21/5040 \\ 0 &0 &0 & 0 & 1/720-1 & 0 \\ 0 &3/6 &8/24 &45/120 &264/720 &1856/5040-1 \\ \end{pmatrix} = \)

\(\displaystyle = (-1, -1, -1, -1, -1, -1) \)

Ennek a megoldása

\(\displaystyle (a_2, a_3, a_4, a_5, a_6, a_7) = (9713740330, 13115308479, 11826442740, 12225059935, 12123252750, 12145107135) / 4856870165 \)

Így a sorsolások átlagos száma \(\displaystyle a_7 = 12145107135/4856870165 \), ami körülbelül 2.50.

Előzmény: [2142] marcius8, 2017-11-28 12:15:32
[2142] marcius82017-11-28 12:15:32

Igyekszem pontosabban megfogalmazni az előbbi felvetésemet. Tehát a hét törpe (Szund, Vidor, Hapci, Kuka, ....) mindegyike felírja a saját nevét egy papírra, ezeket a papírokat egy dobozkába teszik, ezután mindegyik törpe pontosan egy papírt húz a dobozkából. Ha elsőre mindenki más nevét húzza, akkor mindenki annak azt ajándékozza meg, akinek a nevét húzta. (Ennek lesz "1/e" a valószínűsége.) Ebben az esetben a "ki kit ajándékoz meg" sorsolás eredményes, és ekkor a sorsolásnak vége. Akkor van baj, ha van olyan törpe, aki a saját nevét húzta, ekkor a sorsolást a következő szabályok szerint ismétlik meg:

- Ha több, mint 1 törpe húzta a saját nevét valamelyik megismételt sorsolás esetén, akkor ezek a törpék egymás közt újra megismétlik a sorsolást.

- Ha pontosan 1 törpe húzta a nevét, akkor a sorsolást az összes törpe részvételével megismétlik, mert ez így igazságos.

- Ha valamelyik megismételt sorsolás esetén már nincs olyan törpe, aki a saját nevét húzta, akkor a sorsolás eredményes, a sorsolásnak vége, és ekkor minden törpe azt ajándékozza meg, akinek a nevét húzta.

Ekkor várhatóan hány sorsolás után lesz az, hogy minden törpe más törpének a nevét húzta?

Előzmény: [2141] marcius8, 2017-11-28 09:31:52
[2141] marcius82017-11-28 09:31:52

Nemsokára itt a karácsony. A hét törpe is készül egymás megajándékozására. Ezért a hét törpe mindegyike felírja a saját nevét egy kis papírra, a papírokat összehajtva beteszik egy dobozkába. Ezután a hét törpe mindegyike húz a dobozkából pontosan egy papírt, és minden törpe annak ad ajándékot, akinek a nevét húzta. (Ebben még semmi különös nincs.) De előfordulhat, hogy lesznek olyan törpék, akik a saját nevüket húzzák (ennek durván "1/e" a valószínűsége, ami nem elhanyagolható), ezek a törpék egymás közt újra megismétlik ezt a sorsolást. Ha megint lesznek ilyen törpék, akkor ezek a törpék egymás közt újra megismétlik ezt a sorsolást.... Végül előfordulhat az is, hogy az első sorsoláskor, vagy akármelyik sorsoláskor pontosan egy törpe húzza a saját nevét, ekkor a sorsolást mind a hét törpe újra kezdi. Várhatóan hány sorsolásra kerül sor?

[2140] marcius82017-10-08 13:47:42

Nagyon jók a #2138 és #2137 bizonyítások! A 90°-os háromszögre érvényes Pitagorasz-tétel területátdarabolós bizonyításánál a terület fogalma triviálisnak tűnik. De ezek a bizonyítások arra is rávilágítanak, hogy a terület fogalma egyáltalán nem olyan triviális!!!

[2139] marcius82017-10-05 08:11:06

JÉÉÉ!!!!!! Köszi a bizonyításokat FM! Hálám örökké üldözni fog!!!!

[2138] Fálesz Mihály2017-10-04 21:46:49

Átdarabolás 60 fokos háromszöggel:

Előzmény: [2137] Fálesz Mihály, 2017-10-04 21:03:25
[2137] Fálesz Mihály2017-10-04 21:03:25

Egy lehetséges átdarabolás a 120 fokos háromszögre:

Előzmény: [2135] marcius8, 2017-10-04 19:21:54

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]