Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2152] yield12018-01-02 14:06:54

Igen. Pl. ha mind a két függvény konstans.

Előzmény: [2151] marcius8, 2018-01-01 12:35:31
[2151] marcius82018-01-01 12:35:31

Van két periodikus függvény, periódusuk aránya irracionális. Lehet-e a két függvény összege periodikus?

[2150] marcius82017-12-27 19:00:10

Azért a poliédertől elvárom, hogy ne legyen szimmetrikus, és a három gömb középpontja ne legyen egybeeső.

Előzmény: [2149] marcius8, 2017-12-27 11:49:04
[2149] marcius82017-12-27 11:49:04

Van-e olyan 5 csúcsú poliéder, amelynek nincs 4 olyan csúcsa, amelyek egy síkban lennének, és van kívül írt gömbje, és van beírt gömbje, és van éleit érintő gömbje?

[2148] epsilon2017-12-13 16:28:36

Üdv mindenkinek. Segítségre lenne szükségem, mert elmerültem egy dologban. Arról van szó, hogy sin(f(x+y)=sin(f(x)+f(y)) minden x, y VALÓS számra, ahol f(x) egy valós, mindenütt folytonos függvény az R-ből az R-be. A fenti egyenletből következik-e, hogy f(x+y)=f(x)+f(y)+2nPi minden x, y VALÓS számra, vagy f(x+y)=-f(x)-f(y)+(2n+1)Pi minden x, y VALÓS számra? Vagyis továbbvíve a gondolatot, ha f folytonos, akkor az f(x+y)=f(x)+f(y)+2nPi Cauchy egyenlet összes folytonos megoldásai f(x)=ax+b alakú, továbbá az f(x+y)=-f(x)-f(y)+(2n+1)Pi egyenlet összes megoldása f(x)=kPi. A kérdés tehát: Ha sin(f(x+y)=sin(f(x)+f(y)) minden x, y VALÓS számra, f mindenütt folytonos, akkor biztosan igaz-e, hogy f(x)=ax+b, vagy f(x)=kPi? Vagy van arra ellenpélda, hogy bizonyos esetekben az egyik függvényegyenlőség igaz, más esetben a másik, de f mégis folytonos mindenütt? Nem sikerül szerkesztenem ilyen ellenpéldát. Ugyanez a kérdésem lenne cos(f(x+y)=cos(f(x)+f(y)) minden x, y VALÓS számra, ha f mindenütt folytonos. Előre is köszönöm a válaszotokat!

[2147] Erben Péter2017-12-06 19:11:19

Nagyon izgalmas filozófiai kérdés, hogy egy választási rendszer eredménye ,,tükrözi-e a választói akaratot” avagy a választási rendszer „igazságos-e”, de nem könnyű az ilyen kérdéseknek matematikai tartalmat adni.

Tetszőleges választási rendszer esetén általában nagyon könnyű olyan szavazat eloszlást mutatni, ami mellett az adott rendszer igazságtalannak tűnik. Ezen még az sem segít, ha előre megadjuk, milyen kritériumoknak kell megfelelnie egy választási rendszernek és csak utána próbáljuk meghatározni az eljárást. A leghíresebb ilyen negatív eredmény az Arrow-paradoxon, de sokkal egyszerűbb példával is illusztrálhatjuk a „nehéz igazságos választási rendszert csinálni” állítást.

Tegyük fel, hogy példádhoz hasonlóan listákról akarunk kiosztani \(\displaystyle M\) mandátumot. Induljon \(\displaystyle N\) párt a választáson, és az \(\displaystyle i.\) kapjon \(\displaystyle s_i\) szavazatot. Tegyük fel, hogy a választás eredménye az, hogy a \(\displaystyle P_i\) párt \(\displaystyle m_i\) mandátumot nyert és \(\displaystyle \sum m_i = M\). Az egyetlen, amit szeretnénk elvárni a választási rendszertől, hogy ha \(\displaystyle s_i \ge s_j\), akkor \(\displaystyle m_i \ge m_j\) is igaz legyen.

Legyen most \(\displaystyle M = 2\), \(\displaystyle N = 12\), és a pártokra leadott szavazatok sorban: \(\displaystyle (2,2,1,1,1,1,1,1,1,1)\). Feltételünk szerint az egyetlen megengedett eredmény, hogy \(\displaystyle P_1\) és \(\displaystyle P_2\) nyer 1-1 mandátumot, a többiek pedig semmit. Ez viszont azt jelenti, hogy az aktív választók kétharmadának egyetlen képviselője sem lesz, amit nehéz igazságosnak tekinteni. Itt az „igazságtalanságot” talán inkább a mandátumok oszthatatlansága okozza, és nem valamilyen a rendszerbe beépített trükk.

A példádban említett eljárás neve d'Hondt módszer, és ez egy érdekes cikk róla. A Wikipédia szócikkben egy online kalkulátor is linkelve van, amivel lehet kísérletezgetni.

Előzmény: [2145] marcius8, 2017-12-03 14:30:36
[2146] marcius82017-12-03 16:43:13

Pontosítok az előbbi hozzászólásomon: Ha valamelyik \(\displaystyle y_{i,j}\) hányados valamilyen \(\displaystyle x_i\) és valamilyen \(\displaystyle j\) esetén benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között, akkor a \(\displaystyle P_i\) párt egy mandátumot kap. Továbbá a \(\displaystyle P_i\) párt annyi mandátumot kap, ahány \(\displaystyle y_{i,j}\) hányados benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között valamilyen \(\displaystyle x_i\) és valamilyen \(\displaystyle j\) esetén.

Előzmény: [2145] marcius8, 2017-12-03 14:30:36
[2145] marcius82017-12-03 14:30:36

Anélkül, hogy politikát hoznék a fórumba... Magyarországon az országgyűlési mandátumok egy részét úgynevezett listás választások alapján lehet megnyerni. Ez a következőképpen történik: Tegyük fel, hogy van \(\displaystyle n\) mandátum, és a választásokon indulnak a \(\displaystyle P_1\), \(\displaystyle P_2\), \(\displaystyle P_3\),.... pártok. A \(\displaystyle P_1\) párt kap \(\displaystyle x_1\) szavazatot, a \(\displaystyle P_2\) párt kap \(\displaystyle x_2\) szavazatot, a \(\displaystyle P_3\) párt kap \(\displaystyle x_3\) szavazatot,... Legyen \(\displaystyle y_{i,j}=x_i/j\), ahol \(\displaystyle j\) egy \(\displaystyle n\) értékénél nem nagyobb pozitív egész szám. Az így kapott \(\displaystyle y_{i,j}\) hányadosokat csökkenő sorrendbe rendezik, és meghagyják az első \(\displaystyle n\) legnagyobb hányadost, a többit elfelejtik. Ezek után, ha valamelyik \(\displaystyle x_i\) esetén az \(\displaystyle y_{i,j}\) hányados benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között, akkor a \(\displaystyle P_i\) párt kap egy mandátumot. A mandátumok így történő szétosztása mennyiben tükrözi a választók akaratát?

[2144] marcius82017-12-03 14:06:11

Köszi a megoldást! Én valahogyan sorokkal próbálkoztam, előbb, de inkább utóbb az is meg lesz, akkor azt le is fogom írni. Tisztelettel: Bertalan Zoltán.

Előzmény: [2143] jonas, 2017-11-29 17:06:20
[2143] jonas2017-11-29 17:06:20

Ez egy tanulságos Markov-láncos feladat, érdemes végigszámolni.

Legyen a húzások száma \(\displaystyle T \). Minden \(\displaystyle 0 \le t < T \) egészre nézzük meg, hogy \(\displaystyle t \) húzás után a legközelebbi húzásban hány cetli közül kell húzni, ez legyen \(\displaystyle X_t \), valamint legyen \(\displaystyle Y_t \) azon törpék száma, akik önmagukat húzzák ebben a húzásban. Tehát \(\displaystyle 0 \le t < T \) esetén \(\displaystyle 2 \le X_t \le 7 \). Terjesszük ki az \(\displaystyle X \) sorozatot úgy, hogy \(\displaystyle X_t = 0 \) ha \(\displaystyle T \le t \).

Nyilván \(\displaystyle X_0 = 7 \). A játék szabályai szerint ha \(\displaystyle 0 \le t < T \), akkor \(\displaystyle X_{t+1} = Y_t \), kivéve ha \(\displaystyle Y_t = 1 \), amely esetben \(\displaystyle X_{t+1} = 7 \). Mármost rögzített \(\displaystyle X_t \) mellett \(\displaystyle Y_t \) eloszlása nem függ az előzményektől. Az eloszlást pontosan meg is tudjuk adni: \(\displaystyle P(Y_t = y \mid X_t = x) = \textrm{A008290}(y, x)/x! \). Itt az A008290(y, x) szám x elem azon permutációinak a száma, amiben pontosan y fixpoint van, az OEIS A008290 sorozata szerint. Ez a valószínűség nulla, ha \(\displaystyle x < y \). Íme a feltételes eloszlások táblázata.

\(\displaystyle x =\) 2 3 4 5 6 7
\(\displaystyle P(Y_t=0 \mid X_t=x) =\) 1/2 2/6 9/24 44/120 265/720 1854/5040
\(\displaystyle P(Y_t=1 \mid X_t=x) =\) 0 3/6 8/24 45/120 264/720 1855/5040
\(\displaystyle P(Y_t=2 \mid X_t=x) =\) 1/2 0 6/24 20/120 135/720 924/5040
\(\displaystyle P(Y_t=3 \mid X_t=x) =\) 0 1/6 0 10/120 40/720 315/5040
\(\displaystyle P(Y_t=4 \mid X_t=x) =\) 0 0 1/24 0 15/720 70/5040
\(\displaystyle P(Y_t=5 \mid X_t=x) =\) 0 0 0 1/120 0 21/5040
\(\displaystyle P(Y_t=6 \mid X_t=x) =\) 0 0 0 0 1/720 0
\(\displaystyle P(Y_t=7 \mid X_t=x) =\) 0 0 0 0 0 1/5040

A fentiekből az is következik, hogy ha rögzítjük \(\displaystyle x \)-et ahol \(\displaystyle 1 < x \), akkor az \(\displaystyle X_t = x \) feltétel mellett \(\displaystyle X_{t+1} \) eloszlása független az előzményektől, vagyis az \(\displaystyle X_0, \dots, X_{t-1} \) számoktól (és mellesleg még a húzott nevektől is), és ez a feltételes eloszlás bármely \(\displaystyle t \)-re ugyanaz. Ez azt jelenti, hogy \(\displaystyle X \) egy stacionáris markov lánc. Mivel \(\displaystyle X_{t+1} \) az \(\displaystyle Y_t \) fent leírt függvénye eloszlásból, és \(\displaystyle Y_t \) feltételes eloszlását az előbb kiszámoltuk, ezért \(\displaystyle X_{t+1} \) feltételes eloszlását (az átmenet valószínűségeket) is meg tudjuk adni.

\(\displaystyle x =\) 2 3 4 5 6 7
\(\displaystyle P(X_{t+1}=0 \mid X_t=x) =\) 1/2 2/6 9/24 44/120 265/720 1854/5040
\(\displaystyle P(X_{t+1}=2 \mid X_t=x) =\) 1/2 0 6/24 20/120 135/720 924/5040
\(\displaystyle P(X_{t+1}=3 \mid X_t=x) =\) 0 1/6 0 10/120 40/720 315/5040
\(\displaystyle P(X_{t+1}=4 \mid X_t=x) =\) 0 0 1/24 0 15/720 70/5040
\(\displaystyle P(X_{t+1}=5 \mid X_t=x) =\) 0 0 0 1/120 0 21/5040
\(\displaystyle P(X_{t+1}=6 \mid X_t=x) =\) 0 0 0 0 1/720 0
\(\displaystyle P(X_{t+1}=7 \mid X_t=x) =\) 0 3/6 8/24 45/120 264/720 1856/5040

Most akkor számoljuk ki \(\displaystyle T \) várható értékét. Erre stacionáris Markov-láncoknál a szokásos módszer a következő. Jelölje a maradék lépések számának, vagyis \(\displaystyle (T-t) \)-nek, a várható értékét \(\displaystyle a_x \) az \(\displaystyle X_t = x \) feltétel mellett. A fentiek miatt a maradék lépések számának feltételes eloszlása is független az előzményektől, és \(\displaystyle t \)-től is. Nyilván \(\displaystyle a_0 = 0 \). A többi (\(\displaystyle 2 \le x \le 7\)) esetre felírhatunk egy-egy lineáris egyenletet a fenti átmenet valószínűségek alapján.

\(\displaystyle a_x = 1 + \sum_k P(X_{t+1}=k \mid X_t=x) \cdot a_k \)

Az egyenletrendszer megoldása után, mivel \(\displaystyle X_0 = 7 \), ezért a húzások számának várható értéke \(\displaystyle a_7 \).

A konkrét esetben az egyenletrendszer a következő.

\(\displaystyle (a_2, a_3, a_4, a_5, a_6, a_7) \cdot \begin{pmatrix} 1/2-1 &0 &6/24 &20/120 &135/720 & 924/5040 \\ 0 &1/6-1 &0 &10/120 & 40/720 & 315/5040 \\ 0 &0 &1/24-1 & 0 & 15/720 & 70/5040 \\ 0 &0 &0 & 1/120-1 & 0 & 21/5040 \\ 0 &0 &0 & 0 & 1/720-1 & 0 \\ 0 &3/6 &8/24 &45/120 &264/720 &1856/5040-1 \\ \end{pmatrix} = \)

\(\displaystyle = (-1, -1, -1, -1, -1, -1) \)

Ennek a megoldása

\(\displaystyle (a_2, a_3, a_4, a_5, a_6, a_7) = (9713740330, 13115308479, 11826442740, 12225059935, 12123252750, 12145107135) / 4856870165 \)

Így a sorsolások átlagos száma \(\displaystyle a_7 = 12145107135/4856870165 \), ami körülbelül 2.50.

Előzmény: [2142] marcius8, 2017-11-28 12:15:32

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]