Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[264] nadorp2008-01-15 20:48:41

Sajnos a "Szűcs rendezési tételt" nem olvastam, de gyanakszom, hogy a következőtől nem áll messze. Egyébként ezt anal gyakon vettük és úgy tudtam, hogy ez a Csebisev-egyenlőtlenség :-( pedig tényleg nem az.

Legyenek a1\leqa2\leq...\leqan és b1\leqb2\leq...\leqbn nemnegatív számok. Ekkor, ha a {ci} számok a bi számok egy tetszőleges permutációja, akkor

\sum a_ib_{n+1-i}\leq\sum a_ic_i\leq\sum a_ib_i.

Ha ezt felhasználjuk, akkor igaz az eredeti feladat következő általánosítása ( hacsak megint nem néztem el valahol egy egyszerűsítést :-)

Legyenek a1\leqa2\leq...\leqan (n\geq3) pozitív számok. Ekkor

B=\frac{a_1a_2}{a_3}+...+\frac{a_{n-2}a_{n-1}}{a_n}+
\frac{a_{n-1}a_n}{a_1}+\frac{a_na_1}{a_2}\geq a_1+...+a_n

Kezdjük a végén az utolsó két taggal, ekkor

\frac{a_{n-1}a_n}{a_1}+\frac{a_na_1}{a_2}\geq \frac{a_{n-1}a_n}{a_2}+\frac{a_na_1}{a_1}=
\frac{a_{n-1}a_n}{a_2}+a_n. Tehát

B\geq \frac{a_1a_2}{a_3}+...+\frac{a_{n-2}a_{n-1}}{a_n}+
\frac{a_{n-1}a_n}{a_2}+a_n

Újra a fenti "rendezési tételt" alkalmazva a két utolsó törtre

B\geq \frac{a_1a_2}{a_3}+...+
\frac{a_{n-2}a_{n-1}}{a_2}+a_{n-1}+a_n

Ezt folytatva, előbb utóbb ezt kapjuk

B\geq \frac{a_1a_2}{a_3}+\frac{a_2a_3}{a_2}+a_3+...+a_n

B\geq \frac{a_1a_2}{a_2}+\frac{a_2a_3}{a_3}+a_3+...+a_n=
a_1+a_2+...+a_n

Előzmény: [263] epsilon, 2008-01-15 15:20:39
[263] epsilon2008-01-15 15:20:39

Köszi sakkmath a javítást (örömömben észre sem vettem a végén az elírást), na meg kösz a szakreferenciát. Mivel nem jutok hozzá ahoz a forráshoz amit írtál, megfogalmaznád a Szűcs-tételt? Tisztelettel üdv: epsilon

[262] nadorp2008-01-13 20:30:54

Köszi a javítást, igazad van. Belezavarodtam a sok betűbe :-)

Előzmény: [261] sakkmath, 2008-01-13 16:18:31
[261] sakkmath2008-01-13 16:18:31

Kedves nadorp!

Előzmény: [258] nadorp, 2008-01-08 11:29:29
[260] epsilon2008-01-12 08:58:36

Helló nadorp! A feladat 5 vagy több tag esetén is igaznak tűnik, de a 4-re adott bizonyítást sok eset letárgyalása nélkül nem igazán látom átültetni pl 5 tagra :-( Van valami ötleted? Üdv: epsilon

Előzmény: [258] nadorp, 2008-01-08 11:29:29
[259] epsilon2008-01-08 15:02:50

Helló! Köszi, jó ötlet volt az, hogy azt az 1 törtet ami nem illett bele a Cebisev egyenlőtlenségbe (a rendezés monotonításába), 2 esetbe véve tárgyaltad, így valóban teljesen logikus, szép megoldás! Üdv: epsilon

[258] nadorp2008-01-08 11:29:29

Mindkét oldalt elosztva a nem 0 abcd-vel,a feladat ekvivalens a következővel:

\frac{bc}d+\frac{cd}a+\frac{ad}b+\frac{ab}c\geq a+b+c+d.

Két esetet vizsgálunk meg

1.eset: bc\leqad. Ekkor a Csebisev egyenlőtlenség és \frac1d\leq\frac1b miatt

\frac{bc}d+\frac{ad}b\geq\frac{bc}b+\frac{ad}d=c+a

és hasolóan cd\geqab és \frac1a\geq\frac1c miatt

\frac{cd}a+\frac{ab}c\geq\frac{cd}c+\frac{ab}a=d+b

2.eset: bc>ad. Ekkor bc\leqcd és \frac1d\leq\frac1a miatt

\frac{bc}d+\frac{cd}a\geq\frac{bc}a+\frac{cd}d=\frac{bc}a+c

és hasolóan ad\geqab és \frac1b\geq\frac1c miatt

\frac{ad}b+\frac{ab}c\geq\frac{ad}c+\frac{ab}b=\frac{ad}b+a

Összeadva a fenti két egyenlőtlenséget

\frac{bc}a+c+\frac{ad}b+a\geq\frac{bc}b+\frac{ad}a+a+c=c+d+c+a\geq a+b+c+d

Előzmény: [257] epsilon, 2008-01-07 13:40:07
[257] epsilon2008-01-07 13:40:07

B.Ú.É.K. Mindenkinek! Megint van egy szimpatiklus kis feladat, a Cebisev egyenlőtlenségre gyanakszom, de nem tudom a feltételeket hozzá igazítani: Ha a, b, c, d pozitív és növekvő számok ebben a sorrendben, akkor igaz a következő egenlőtlenség:

[256] Róbert Gida2007-12-20 10:20:47

D. O. Skljarszkij-N. N. Csencov-I. M. Jaglom Válogatott feladatok és tételek az elemi matematika köréből című könyvben ez 231.a feladata. Megoldás a könyv végén.

Előzmény: [255] PAL, 2007-12-19 23:15:02
[255] PAL2007-12-19 23:15:02

Sziasztok! A segítségeteket szeretném kérni a (2)-es állítás bizonyításához. Az (1)-es egyenlőségre, mely a másodikhoz "külsőre" hasonló típusú, szép és "középiskolás fejjel" is könnyen érthető, 5-7 soros bizonyítási módszert találtam Pogáts Ferenc: Trigonometria(1973) c. könyvének 179. oldalán. Ezt azért írom le, mert hasonlóan frappáns bizonyítást keresek az állítás(2)-höz is. Tehát azonos algebrai átalakításokkal, lemmák alkalmazása nélkül, egy rövid, 5-6 soros bizonyítás lenne számomra praktikusan megfelelő (úgy tudom, hogy elvileg van ilyen, de nekem sajnos nem sikerült összehozni. Még talán a teljes-indukciós lenne a legjobb). Ha valaki tud ilyet - vagy bármilyet - hálás lennék érte, ha felrakná ide, vagy e-mailben elküldené nekem. Köszönöm.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]