Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[271] nadorp2008-01-16 13:04:13

Ha jobban megnézed, minden lépésben használtam n=2-re.

\frac{xy}z+\frac{pq}r\geq\frac{xy}r+\frac{pq}z, ha xy\leqpq és z>r

Előzmény: [270] epsilon, 2008-01-16 12:35:53
[270] epsilon2008-01-16 12:35:53

u.i.: Én úgy vélem, hogy a bizonyítás során végül is nem igazán használtad a "rendezési tételt" hanem inkább az a1<=a2<=...<=an rendezést, mert Én őszintén bevallva nem látom, hogy a rendezési tételből melyek a 264. hozzászólás kezdetén levő ai illetve bi azonos monotonítású sorozatok. Vagy tévedek? Üdv: epsilon

[269] epsilon2008-01-16 12:31:07

Kedves nadorp! A "Tulajdonképpen az a2 nevezőt "toljuk el" mindig 1-gyel balra" pontosításod úgy nézem, teljesen eloszlatja a kételyeimet, mégegyszer tüzetesen levezetek több első és utolsó lépést. Kedves sakkmath! Kösz az infót, ott is szétnézek, de megköszönném, ha be tudnád szkennerelni, és gondolom, könnyebb ha valahova feltöltöd és a linket megadod hogy letölthessük(gondolom, nem szabályellenes), mert itt méretkorlát is van a képekre. Üdv: epsilon

Előzmény: [267] nadorp, 2008-01-16 10:21:56
[268] sakkmath2008-01-16 11:10:24

Kedves epsilon és nadorp!

Az 'ujjgyakorlatok' topic [273]-as hozzászólásában Sirpi dióhéjban elmondja a Szűcs-féle rendezési tételt (egy konkrét feladat megoldása kapcsán). Sirpi ismertetéséből is látható, hogy az a bizonyítás, amibe bekapcsolódtam, a Szűcs Adolf-féle rendezési tételt használja.

Csebisev nevéhez többféle egyenlőtlenség is fűződik. A jelen témakörhöz legközelebbi egyenlőtlensége megtalálható Skljarszkij-Csencov-Jaglom: Válogatott fejezetek és tételek... 1. kötetében (TipoTex Kiadó) is. Ha kell, holnapra kiollózom és fölteszem. Üdvözlettel: sakkmath

Előzmény: [263] epsilon, 2008-01-15 15:20:39
[267] nadorp2008-01-16 10:21:56

A két utolsó tört a második esetben:

\frac{a_{n-2}a_{n-1}}{a_n} és \frac{a_{n-1}a_n}{a_2}

A két utolsó tört a harmadik esetben:

\frac{a_{n-3}a_{n-2}}{a_{n-1}} és \frac{a_{n-2}a_{n-1}}{a_2}

Tulajdonképpen az a2 nevezőt "toljuk el" mindig 1-gyel balra

Előzmény: [266] epsilon, 2008-01-16 09:01:10
[266] epsilon2008-01-16 09:01:10

Helló nadorp! Belenéztem jobban a bizonyításba, és úgy tűnik, hogy a második lépéstől lefele az első lépésben elsütött minorálás nem igazán alkalmazható? Pontosabban: ott ahol írod, hogy "Kezdjük a végén az utolsó két taggal, ekkor"...itt a nevezőkben ebben a sorrendben a1 és a2 szerepel, és a1<a2. Ellenben ahol ezt írod, hogy "Újra a fenti "rendezési tételt" alkalmazva a két utolsó törtre" ott a nevezőben ebben a sorrendben a3 és a2 szerepek és ezekre a3>a2 vagyis úgy látom, hogy nem teljesül a rendezési tételből a monotonítási feltétel, és ugyanez a helyzet tovább lefele minden más 2 összehasonlításnál szerintem éppen a fordított egyenlőtlenség miatt úgy vélem, nem ismételhető meg az 1. lépés, vagy tévedek? Üdv: epsilon

[265] epsilon2008-01-16 06:47:02

Helló! Köszi nadorp! A jobboldali egyenlőtlenséget Én is úgy tudtam, hogy a Cebisev nevéhez fűződik, hiszen annak a bizonyítsa során ilyen típusú egyenlőtlenségeket alkalmazunk, találkozunk. Az általánosítási ötletedben végül a mentő ötlet az volt, hogy lépésről-lépésre alkalmaztad, Én azért jártam zsákutcába, mert egyből akartam alkalmazni a jobboldali egyenlőtlenséget (vagy a Cebisevet), de akárhogy választottam a tagokat, vagy nem lehetett tudni semmit az egymáshoz való viszonyukról, vagy a sorozatok ellentétes nonotonításuak voltak, így nem járhattam sikerrel. Tüzetesen átnézem a bizoyítást, de már a gondolatmenetet követve nagyon egyértelműnek tűnik, hogy így kell lenie. Üdv: epsilon

[264] nadorp2008-01-15 20:48:41

Sajnos a "Szűcs rendezési tételt" nem olvastam, de gyanakszom, hogy a következőtől nem áll messze. Egyébként ezt anal gyakon vettük és úgy tudtam, hogy ez a Csebisev-egyenlőtlenség :-( pedig tényleg nem az.

Legyenek a1\leqa2\leq...\leqan és b1\leqb2\leq...\leqbn nemnegatív számok. Ekkor, ha a {ci} számok a bi számok egy tetszőleges permutációja, akkor

\sum a_ib_{n+1-i}\leq\sum a_ic_i\leq\sum a_ib_i.

Ha ezt felhasználjuk, akkor igaz az eredeti feladat következő általánosítása ( hacsak megint nem néztem el valahol egy egyszerűsítést :-)

Legyenek a1\leqa2\leq...\leqan (n\geq3) pozitív számok. Ekkor

B=\frac{a_1a_2}{a_3}+...+\frac{a_{n-2}a_{n-1}}{a_n}+
\frac{a_{n-1}a_n}{a_1}+\frac{a_na_1}{a_2}\geq a_1+...+a_n

Kezdjük a végén az utolsó két taggal, ekkor

\frac{a_{n-1}a_n}{a_1}+\frac{a_na_1}{a_2}\geq \frac{a_{n-1}a_n}{a_2}+\frac{a_na_1}{a_1}=
\frac{a_{n-1}a_n}{a_2}+a_n. Tehát

B\geq \frac{a_1a_2}{a_3}+...+\frac{a_{n-2}a_{n-1}}{a_n}+
\frac{a_{n-1}a_n}{a_2}+a_n

Újra a fenti "rendezési tételt" alkalmazva a két utolsó törtre

B\geq \frac{a_1a_2}{a_3}+...+
\frac{a_{n-2}a_{n-1}}{a_2}+a_{n-1}+a_n

Ezt folytatva, előbb utóbb ezt kapjuk

B\geq \frac{a_1a_2}{a_3}+\frac{a_2a_3}{a_2}+a_3+...+a_n

B\geq \frac{a_1a_2}{a_2}+\frac{a_2a_3}{a_3}+a_3+...+a_n=
a_1+a_2+...+a_n

Előzmény: [263] epsilon, 2008-01-15 15:20:39
[263] epsilon2008-01-15 15:20:39

Köszi sakkmath a javítást (örömömben észre sem vettem a végén az elírást), na meg kösz a szakreferenciát. Mivel nem jutok hozzá ahoz a forráshoz amit írtál, megfogalmaznád a Szűcs-tételt? Tisztelettel üdv: epsilon

[262] nadorp2008-01-13 20:30:54

Köszi a javítást, igazad van. Belezavarodtam a sok betűbe :-)

Előzmény: [261] sakkmath, 2008-01-13 16:18:31

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]