Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[341] Lóczi Lajos2008-03-04 22:29:48

Még egyszer hadd térjek vissza a problémára egy utólagos elemzés erejéig, más kiindulással és kevésbé explicit érveléssel, a Stirling-re való hivatkozás nélkül.

A hányados- és gyökkritérium témaköréből ismert a következő egyenlőtlenséglánc:


{\rm{liminf}}_{n\to \infty} \frac{A_{n+1}}{A_n}\le 
{\rm{liminf}}_{n\to \infty} \root n \of{A_n}\le
{\rm{limsup}}_{n\to \infty} \root n \of{A_n}\le 
{\rm{limsup}}_{n\to \infty} \frac{A_{n+1}}{A_n}.

(Ez a lánc egyébként azt mondja, hogy a gyökkritérium erősebb a hányadoskritériumnál.)

A megadott rekurziót az en=(1+1/n)n és A_n=\frac{a_{n+1}}{a_n} jelölésekkel így írhatjuk át:


\frac{A_{n+1}}{A_n}=e_n.

Mivel itt a jobb oldal liminf-je és limsup-ja egyaránt e, a fentiekből rögtön adódik, hogy létezik


{\rm{lim}}_{n\to \infty} \root n \of{\frac{a_{n+1}}{a_n}}

és e-vel egyenlő. Innen a továbbhaladás már hasonló (de logaritmálás nélkül is megy a dolog persze), a limesz definíciójából kiindulva megmutatjuk, hogy létezik


{\rm{lim}}_{n\to \infty} \root {n^2} \of{a_n}

és \sqrt{e}-vel egyenlő.

Előzmény: [325] nadorp, 2008-03-03 21:56:02
[340] Lóczi Lajos2008-03-04 22:07:31

(Ez a definíció persze már pl. cauchy-tól elhangzott, egyenlőtlenség alakjában felírva.)

Előzmény: [338] sakkmath, 2008-03-04 15:48:23
[339] epsilon2008-03-04 17:49:25

OK, köszi mindkettőtöknek! Így már tiszta!

[338] sakkmath2008-03-04 15:48:23

Egyetértőleg csatlakozom az előttem szólóhoz. A 297. feladat szövege nem szól az f függvény [0;1]-beli differenciálhatóságáról, ezért a kovexitás érintős definícióját ne használjuk. A konvexitás kérdésében - tankönyv híján - vegyük a WIKIPÉDIA másik definícióját:

Az f: I \to R intervallumon értelmezett valós változójú függvény konvex, ha a függvénygörbe (bármely, az adott intervallumba eső ÿ(kiegészítés tőlem)) két pontját összekötő húr a függvénygörbe fölött halad ...

[337] nadorp2008-03-04 15:22:45

Nem is gondoltam ezt bizonyításnak, Te kérdeztél egy konkrét példát. Viszont az látszik az ábrából, hogy van olyan x_1<\frac12,x_2>\frac12, hogy az A=(x1,f(x1)) és B=(x2,f(x2)) pontokat összekötő szakasz a görbe alatt van. Konkrétan ha x_1=\frac14 és x_2=\frac34, akkor

f\left(\frac{x_1+x_2}2\right)>\frac{f(x_1)+f(x_2)}2, ez pedig ellentmond a konvexitásnak.

Előzmény: [335] epsilon, 2008-03-04 14:21:49
[336] cauchy2008-03-04 14:35:45

Ne az a pontban húzzál érintőt, hanem az a-\varepsilon pontban, és meglátod, hogy egy másik pontban metszeni fogja az ábrát.

Előzmény: [335] epsilon, 2008-03-04 14:21:49
[335] epsilon2008-03-04 14:21:49

Helló nadorp! gondolom, hogy ezzel nem lehetne belátni, hogy a (0,1) intervallumon nem lenne konvex (csak egy értéket mondtam), és az ábrádon megpróbáltam csak a függvényt meghagyni, és az 1/2-ben van bal illetve jobboldali "alsó érintő" és miért ne lenne konvex az a függvény, amt így látunk?

Előzmény: [331] nadorp, 2008-03-04 09:43:27
[334] cauchy2008-03-04 11:58:24

Ha egyszer fennáll a lenti egyenlőtlenség, akkor nem konvex. És mint látható, az érintő sem marad az ábra alatt.

Előzmény: [330] epsilon, 2008-03-04 06:30:32
[333] cauchy2008-03-04 11:48:17

Az ábrán nem az látszik, amit ír, de hasonlít ahhoz.

Előzmény: [331] nadorp, 2008-03-04 09:43:27
[332] nadorp2008-03-04 10:39:50

De igen, viszont előtte valahogy beláttam, hogy a sorozat korlátos, és még ez dolgozott bennem.

Előzmény: [328] Lóczi Lajos, 2008-03-04 00:05:45

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]