Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[378] epsilon2008-03-17 16:30:22

Köszi Róbert Gida, az eredmény éppen ennyi, csak éppen az a gond, hogy ez egy 11. osztályos tanulónak kitűzött feladat, és ilyen nagyágyú nélkül szeretném megoldani.

Előzmény: [377] Róbert Gida, 2008-03-17 15:43:32
[377] Róbert Gida2008-03-17 15:43:32

Stirling formulával könnyen kijön, hogy a határérték: \frac 1{\sqrt 2}

Előzmény: [373] epsilon, 2008-03-17 14:28:05
[376] epsilon2008-03-17 14:59:13

Helló cauchy! "(277) Nekem az jön ki, hogy m = -2." Ez hogyan jött ki, mert Nekem az m×m-2m+3=0 egyenlet jött ki, így nincs megoldás :-( valóban így lenne? "(131) Nem azért, mert [0, 4) a helyes?" Ez valóban teéjesen Ok, mert nem föltétlen muszáj, hogy a nevező 2-od fokú legyen, lehet "degenerált" is, és akkor nem szükséges a d<0 mert az már értelmetlen. Kösz az észrevételt! Üdv: epsilon

Előzmény: [365] cauchy, 2008-03-07 22:15:03
[375] epsilon2008-03-17 14:45:58

116-os: Minden n pozitív egész szám esetén jelölje Inv(n) azon (x,y) egész számpárok számát amelyek szimmetrizálhatók és amelyekre x×x+y×y=n×n. Mennyi a következő összeg értéke: Inv(1)+Inv(2)+Inv(3)+...+Inv(2005)

[374] epsilon2008-03-17 14:41:38

Közben még előkerültek a múlt héten függőben maradtak, íme még egy:245-ös. Tekintsük a lennebb látható egyenletet, minden n>=2 pozitív egészre. Melyek azok az n értékek, amelyekre az egyenletnek van legalább 1 pozitív egész megoldása? A válasz: 4s+3 ahol s nemnegatív egész, ellenben Én már n=3 esetén nem láttam az egész megoldást, hiszen ez a245=5×5×11 pozitív osztói közül való kell legyen. Nagyon gyanus ez az eredmény. Az lenne a kérdésem, hogy az n=4s+3 bár egy szükséges feltétel? Mert szerintem nem elégséges, vagy tévedek? Itt az egyenlet:

[373] epsilon2008-03-17 14:28:05

Helló! Ismét jelentkezem, egy jámbornak tűnő limesszel, hiába fejtettem ki a kombinációkat, egszerűsítés után sem találtam valami olyan alakra ami a megadot limeszértéket adja. (Ezt egyenlőre még nem mondanám meg, mert megint azt vadászom, vajon az eredmény jó-e?) Íme a limesz, és előre is kösz bármilyen jó tippet! Üdv: epsilon

[372] epsilon2008-03-09 19:24:31

Talán a legrövidebb megoldás erre a feladatra az affixumokkal ( a csúcsokhoz rendelt komplex számokkal) van: Legyenek rendre a,b,c,d az ABCD négyszög csúcsainak affixumai, legyenek M,N,P,Q az AB, BC, CD, DA oldalak felezőpontok affixumai, ezért: m=1/2(a+b), n=1/2(b+c), p=1/2(c+d), q=1/2(d+a). Az MNPG paralelogramma <=> m+p=n+q ami azonnal adódik.

[371] Onkie2008-03-08 22:41:07

Ezer hála és köszönet!

Előzmény: [370] Róbert Gida, 2008-03-08 22:27:36
[370] Róbert Gida2008-03-08 22:27:36

Halálismert példa. Legyen ABCD a négyszög. P az AB oldal felezőpontja, Q az BC oldalé, R a CD oldalé, S a DA oldalé. Ekkor a felezőpontok által meghatározott négyszög csúcsai sorrendben: PQRS. Az, hogy paralellogramma azzal ekvivalens, hogy a szemközti oldalai párhuzamosak, azaz PQ||RS és QR||SP kell. De PQ az ABC háromszög középvonala, így párhuzamos az alappal, ami az AC, továbbá RS a CDA háromszög középvonala, így párhuzamos az alappal, ami az AC. Ergó mindkettő párhuzmaos az AC-vel, így PQ és RS egymással is párhuzamosak. Hasonlóan QR és SP is párhuzamos. Ami kellett.

Standard megoldása egyébként vektorokkal van. Az is elemi.

Előzmény: [369] Onkie, 2008-03-08 22:12:28
[369] Onkie2008-03-08 22:12:28

Sziasztok!

Valaki el tudná küldeni e-mailben annak a tételnek a bizonyítását, hogy bármely tetszőleges négyszög oldalainak felezőpontjait összekötve paralelogrammát kapok? Az egész napomat a bizonyítással töltöttem, eredménytelenül... A segítséget előre is köszönöm! E-mail címem: xuli27@hotmail.com

U.i.: ha nem oldható meg az e-mailben való elküldés, e-mailben írd meg, hogy válaszoltál. Ez esetben is előre köszönöm a fáradozásokat!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]